首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pharmacologically distinct calcium channels have been characterized in dissociated cutaneous sensory neurons and motoneurons of the larval lamprey spinal cord. To enable cell identification, sensory dorsal cells and motoneurons were selectively labeled with fluorescein-coupled dextran amine in the intact spinal cord in vitro before dissociation. Calcium channels present in sensory dorsal cells, motoneurons, and other spinal cord neurons were characterized with the use of whole cell voltage-clamp recordings and specific calcium channel agonist and antagonists. The results show that a transient low-voltage-activated (LVA) calcium current was present in a proportion of sensory dorsal cells but not in motoneurons, whereas high-voltage-activated (HVA) calcium currents were seen in all neurons recorded. The different components of HVA current were dissected pharmacologically and similar results were obtained for both dorsal cells and motoneurons. The N-type calcium channel antagonist omega-conotoxin-GVIA (omega-CgTx) blocked >70% of the HVA current. A large part of the omega-CgTx block was reversed after washout of the toxin. The L-type calcium channel antagonist nimodipine blocked approximately 15% of the total HVA current. The dihydropyridine agonist (+/-)-BayK 8644 markedly increased the amplitude of the calcium channel current. The BayK-potentiated current was not affected by omega-CgTx, indicating that the reversibility of the omega-CgTx effect is not due to a blockade of L-type channels. Simultaneous application of omega-CgTx and nimodipine left approximately 15% of the HVA calcium channel current, a small part of which was blocked by the P/Q-type channel antagonist omega-agatoxin-IVA. In the presence of the three antagonists, the persistent residual current (approximately 10%) was completely blocked by cadmium. Our results provide evidence for the existence of HVA calcium channels of the N, L, and P/Q types and other HVA calcium channels in lamprey sensory neurons and motoneurons. In addition, certain types of neurons express LVA calcium channels.  相似文献   

2.
To better understand why sensory neurons express voltage-gated Na+ channel isoforms that are different from those expressed in other types of excitable cells, we compared the properties of the hNE sodium channel [a human homolog of PN1, which is selectively expressed in dorsal root ganglion (DRG) neurons] with that of the skeletal muscle Na+ channel (hSkM1) [both expressed in human embryonic kidney (HEK293) cells]. Although the voltage dependence of activation was similar, the inactivation properties were different. The V1/2 for steady-state inactivation was slightly more negative, and the rate of open-state inactivation was approximately 50% slower for hNE. However, the greatest difference was that closed-state inactivation and recovery from inactivation were up to fivefold slower for hNE than for hSkM1 channels. TTX-sensitive (TTX-S) currents in small DRG neurons also have slow closed-state inactivation, suggesting that hNE/PN1 contributes to this TTX-S current. Slow ramp depolarizations (0.25 mV/msec) elicited TTX-S persistent currents in cells expressing hNE channels, and in DRG neurons, but not in cells expressing hSkM1 channels. We propose that slow closed-state inactivation underlies these ramp currents. This conclusion is supported by data showing that divalent cations such as Cd2+ and Zn2+ (50-200 microM) slowed closed-state inactivation and also dramatically increased the ramp currents for DRG TTX-S currents and hNE channels but not for hSkM1 channels. The hNE and DRG TTX-S ramp currents activated near -65 mV and therefore could play an important role in boosting stimulus depolarizations in sensory neurons. These results suggest that differences in the kinetics of closed-state inactivation may confer distinct integrative properties on different Na+ channel isoforms.  相似文献   

3.
We characterized toxin-insensitive calcium currents expressed by acutely dissociated embryonic dorsal root ganglion neurons. In the presence of 3 microM omega-conotoxin-GVIA, 3 microM nitrendipine and either 500 nM omega-agatoxin-IVA or 500 nM omega-conotoxin-MVIIC to inhibit N-, L- and P/Q-type currents, respectively, all neurons expressed two residual currents: a T-type and another which we referred to as toxin-resistant current. The toxin-resistant current (i) consisted of an inactivating and a sustained components, (ii) had a threshold of activation and a steady-state inactivation comprised between that of the T-type current and that of the other high-voltage-activated currents, (iii) had the same permeability for barium and calcium used as charge carriers, (iv) was highly sensitive to both cadmium and nickel; and (v) was insensitive to 500 microM amiloride which abolished the T-type at this concentration. The properties of the toxin-resistant current are very similar to those of the currents expressed in oocytes following injection of alpha(1E) subunits which we demonstrated to be present in these neurons. Therefore a component of the toxin-resistant current calcium channels in sensory neurons may be closely related to those calcium channels formed by alpha(1E) subunits.  相似文献   

4.
The mammalian degenerin MDEG1 belongs to the nematode degenerin/epithelial Na+ channel superfamily. It is constitutively activated by the same mutations that cause gain-of-function of the Caenorhabditis elegans degenerins and neurodegeneration. ASIC and DRASIC, which were recently cloned, are structural homologues of MDEG1 and behave as H+-gated cation channels. MDEG1 is also a H+-activated Na+ channel, but it differs from ASIC in its lower pH sensitivity and slower kinetics. In addition to the generation of a constitutive current, mutations in MDEG1 also alter the properties of the H+-gated current. Replacement of Gly-430 in MDEG1 by bulkier amino acids, such as Val, Phe, or Thr, drastically increases the H+ sensitivity of the channel (half-maximal pH (pHm) approximately 4.4 for MDEG1, pHm approximately 6.7 for the different mutants). Furthermore, these replacements completely suppress the inactivation observed with the wild-type channel and increase the sensitivity of the H+-gated channel to blockade by amiloride by a factor of 10 without modification of its conductance and ionic selectivity. These results as well as those obtained with other mutants clearly indicate that the region surrounding Gly-430, situated just before the second transmembrane segment, is essential for pH sensitivity and gating.  相似文献   

5.
6.
The modulation of the Cl- current activated by gamma-aminobutyric acid (GABA) by changes in extracellular pH in freshly isolated rat dorsal root ganglia (DRG) neurons was studied using the whole-cell patch-clamp technique. In the pH range of 5.0-9.0, increased extracellular pH enhanced, and decreased extracellular pH suppressed, current activated by 10 microM GABA in a reversible and concentration-dependent manner with an IC50 of pH 7.1 in these neurons. Acidification to pH 6.5 inhibited currents activated by the GABAA-selective agonist muscimol in all neurons tested. The antagonism of GABA-activated current by lowering the pH was equivalent at holding potentials between -80 and +40 mV and did not involve a significant alteration in reversal potential. Acidification shifted the GABA concentration/response curve to the right, significantly increasing the EC50 for GABA without appreciably changing the slope or maximal value of the curve. Inhibition of the GABA-activated current by protons was not significantly different when the patch-pipette solution was buffered at pH 7.4 or pH 6.5. These results suggest that extracellular protons inhibit GABAA receptor channels in primary sensory neurons by decreasing the apparent affinity of the receptor for GABA. This represents a novel mechanism of inhibition by protons of a neurotransmitter-gated ion channel. Proton inhibition of GABAA receptor channels may account in part for the modulation by protons of sensory information transmission under certain pathophysiological conditions.  相似文献   

7.
Expression of trk receptors is a major determinant of neurotrophin responsiveness of sensory neurons. Although it has been apparent for some time that subpopulations of dorsal root and trigeminal ganglion neurons respond in vitro to each of the members of the neurotrophin family, the extent to which functionally distinct subclasses of sensory neurons are dependent on the actions of different neurotrophins for their development and function remains an active area of investigation. One step towards elucidating the role of various neurotrophins in development and function of sensory neurons has been to examine the distribution of trk receptors on sensory neurons. These studies have clearly revealed that members of the trk family are differentially expressed in functionally distinct populations of both developing and mature sensory neurons and, further, have provided evidence consistent with a shift in neurotrophin responsiveness during the development of sensory neurons.  相似文献   

8.
Amiloride-sensitive sodium channels have been implicated in reproductive and early developmental processes of several species. These include the fast block of polyspermy in Xenopus oocytes that follows the sperm binding to the egg or blastocoel expansion in mammalian embryo. We have now identified a gene called dGNaC1 that is specifically expressed in the gonads and early embryo in Drosophila melanogaster. The corresponding protein belongs to the superfamily of cationic channels blocked by amiloride that includes Caenorhabditis elegans degenerins, the Helix aspersa FMRF-amide ionotropic receptor (FaNaC), the mammalian epithelial Na+ channel (ENaC), and acid-sensing ionic channels (ASIC, DRASIC, and MDEG). Expression of dGNaC1 in Xenopus oocytes generates a constitutive current that does not discriminate between Na+ and Li+, but is selective for Na+ over K+. This current is blocked by amiloride (IC50 = 24 microM), benzamil (IC50 = 2 microM), and ethylisopropyl amiloride (IC50 = 49 microM). These properties are clearly different from those obtained after expression of the previously cloned members of this family, including ENaC and the human alphaENaC-like subunit, deltaNaC. Interestingly, the pharmacology of dGNaC1 is not very different from that found for the Na+ channel characterized in rabbit preimplantation embryos. We postulate that this channel may participate in gametogenesis and early embryonic development in Drosophila.  相似文献   

9.
Membrane excitability in different tissues is due, in large part, to the selective expression of distinct genes encoding the voltage-dependent sodium channel. Although the predominant sodium channels in brain, skeletal muscle, and cardiac muscle have been identified, the major sodium channel types responsible for excitability within the peripheral nervous system have remained elusive. We now describe the deduced primary structure of a sodium channel, peripheral nerve type 1 (PN1), which is expressed at high levels throughout the peripheral nervous system and is targeted to nerve terminals of cultured dorsal root ganglion neurons. Studies using cultured PC12 cells indicate that both expression and targeting of PN1 is induced by treatment of the cells with nerve growth factor. The preferential localization suggests that the PN1 sodium channel plays a specific role in nerve excitability.  相似文献   

10.
The relationship between the expression of calretinin and the maturation level of peripheral sensory neurons was investigated by means of immunohistochemistry and immunoblot analysis. Our immunohistochemical results show that calretinin is expressed during two different developmental phases in rat dorsal root ganglia. The early phase lasts between embryonic days 11 and 14, when calretinin is detectable in the majority (75%) of the cells. A second phase starts at embryonic day 17 and lasts throughout the whole postnatal life, when calretinin is expressed only in a small proportion of the neurons (less than 8%). Between these two periods no calretinin is found in the ganglia. These changes in calretinin expression during embryonic development were confirmed by Western blot analysis. The early expression of calretinin in dorsal root ganglion cells suggests that calretinin may act as a calcium regulator until neurotrophins take over the precise tuning of intracellular calcium concentration.  相似文献   

11.
Pacific ciguatoxin-1 (P-CTX-1), is a highly lipophilic cyclic polyether molecule originating from the marine dinoflagellate Gambierdiscus toxicus. Its effects were investigated on sodium channel subtypes present in acutely dissociated rat dorsal root ganglion neurons, using whole-cell patch clamp techniques. Concentrations of P-CTX-1 ranging from 0.2 to 20 nM had no effect on the kinetics of tetrodotoxin-sensitive (TTX-S) or tetrodotoxin-resistant (TTX-R) sodium channel activation and inactivation, however, a concentration-dependent reduction in peak current amplitude occurred in both channel types. The main actions of 5 nM P-CTX-1 on TTX-S sodium channels were a 13-mV hyperpolarizing shift in the voltage dependence of sodium channel activation and a 22-mV hyperpolarizing shift in steady-state inactivation (hinfinity). In addition, P-CTX-1 caused a rapid rise in the membrane leakage current in cells expressing TTX-S sodium channels. This effect was blocked by 200 nM TTX, indicating an action mediated through TTX-S sodium channels. In contrast, the main action of P-CTX-1 (5 nM) on TTX-R sodium channels was a significant increase in the rate of recovery from sodium channel inactivation. These results indicate that P-CTX-1 acts to modify voltage-gated sodium channels present in peripheral sensory neurons consistent with its action to increase nerve excitability. This provides an explanation for the sensory neurological disturbances associated with ciguatera fish poisoning.  相似文献   

12.
Of the cloned P2X receptor subunits, six are expressed in sensory neurons, suggesting that the native channels may be heteromultimers with diverse composition. It has been proposed that P2X2 and P2X3 form heteromultimers in sensory neurons. We further tested this hypothesis by examining the relationship of P2X2 and P2X3 immunocytochemically. In rat dorsal root and nodose ganglia, P2X2- and P2X3-immunoreactivity (-ir) were highly colocalized, although single-labeled cells were also present. In dorsal root ganglia (DRG), in some cases P2X2-ir appeared to be present in satellite cells. In dorsal horn of spinal cord, at low magnification the laminar localization of P2X2- and P2X3-ir overlapped, but at high magnification colocalization was rarely observed. In contrast, in the solitary tract and its nucleus (NTS), colocalization of P2X2- and P2X3-ir was seen at low and high magnification. These results suggest that the relationship of P2X2- and P2X3-ir is different in nodose and dorsal root ganglia and might reflect differences in the targeting of P2X receptors in different sensory neurons. In monkey, P2X2-ir was observed in DRG neurons and satellite cells and in dorsal horn of spinal cord. P2X3-ir was also seen in DRG neurons. However, the presence of P2X2-ir in NTS as well as the presence of P2X3-ir in spinal cord and NTS could not be established definitively. These results suggest species differences, although a more extensive study of primate sensory systems is necessary.  相似文献   

13.
P2X receptors for adenosine 5'-triphosphate (ATP) comprise a family of ligand-gated cation channels with distinct characteristics which are dependent on the receptor subunits (P2X1-7) expressed, and the homomeric or heteromeric assembly of protein subunits in individual cells. We describe the properties of P2X receptors expressed by cultured adult rat dorsal root ganglion cells on the basis of the time course of responses to ATP, alpha, beta-methylene adenosine 5'-triphosphate (alpha, beta-meATP) and 2-methyl-thioadenosine 5'-triphosphate (2-meSATP), and using the antagonists 2',3'-O-(2,4,6-trinitrophenyl) ATP (TNP-ATP), a novel and highly selective purinoceptor antagonist, suramin and iso-pyridocalphosphate-6-azophenyl-2',5' disulphonic acid (PPADS). ATP (10 microM) evoked inward currents in approximately 95% of neurons tested and > 80% responded with a fast transient inward current that rapidly inactivated during the continued presence of ATP. Of the remaining neurons, approximately 4% showed a sustained response and approximately 10% showed a combination of transient and sustained components. Rapid application of ATP, alpha,beta-meATP and 2meSATP demonstrated these to be full agonists of the rapidly inactivating P2X receptor (pA50 values = 5.83, 5.86 and 5.55, respectively), whilst uridine triphosphate (UTP) and 1-beta,gamma-methyleneadenosine 5'-triphosphate (1-beta,gamma-meATP) were ineffective as agonists. These rapidly inactivating responses could be inhibited by TNP-ATP, suramin and PPADS (pIC50 = 9.5, 6.5, 6.4, respectively). Using inactivation protocols, we demonstrate the presence of homomeric P2X3-like receptors and non-inactivating P2X receptors, which indicates that individual subsets of adult dorsal root ganglion neurons have distinct P2X receptor phenotypes, and that individual DRG neurons may express multiple P2X receptor subtypes.  相似文献   

14.
We have studied the distribution and regulation of the P2X3 receptor (a ligand-gated ion channel activated by ATP) in adult dorsal root ganglion (DRG) neurons using a polyclonal antibody. P2X3 receptor immunoreactivity was normally present in about 35% of L4/5 DRG neurons, virtually all small in diameter. In the dorsal horn, P2X3 receptor expression was restricted to the terminals of sensory neurons terminating in lamina IIinner. P2X3 receptors were expressed in approximately equal numbers of sensory neurons projecting to skin and viscera but in very few of those innervating skeletal muscle. P2X3 receptors were found mostly in sensory neurons that bind the lectin IB4. After sciatic nerve axotomy, P2X3 receptor expression dropped by more than 50% in L4/5 DRG. Glial cell line-derived neurotrophic factor (GDNF), delivered intrathecally, completely reversed axotomy-induced down-regulation of the P2X3 receptor. We conclude that P2X3 receptors are normally expressed in nociceptive primary sensory neurons, predominantly the nonpeptidergic nociceptors. P2X3 receptors are down-regulated following peripheral nerve injury and their expression can be regulated by GDNF.  相似文献   

15.
16.
Calcium entry through voltage-gated calcium channels can activate either large- (BK) or small- (SK) conductance calcium-activated potassium channels. In hippocampal neurons, activation of BK channels underlies the falling phase of an action potential and generation of the fast afterhyperpolarization (AHP). In contrast, SK channel activation underlies generation of the slow AHP after a burst of action potentials. The source of calcium for BK channel activation is unknown, but the slow AHP is blocked by dihydropyridine antagonists, indicating that L-type calcium channels provide the calcium for activation of SK channels. It is not understood how this specialized coupling between calcium and potassium channels is achieved. Here we study channel activity in cell-attached patches from hippocampal neurons and report a unique specificity of coupling. L-type channels activate SK channels only, without activating BK channels present in the same patch. The delay between the opening of L-type channels and SK channels indicates that these channels are 50-150 nm apart. In contrast, N-type calcium channels activate BK channels only, with opening of the two channel types being nearly coincident. This temporal association indicates that N and BK channels are very close. Finally, P/Q-type calcium channels do not couple to either SK or BK channels. These data indicate an absolute segregation of coupling between channels, and illustrate the functional importance of submembrane calcium microdomains.  相似文献   

17.
Effect of nickel ions (Ni2+) on noninactivating calcium channels in squid giant fiber lobe (GFL) neurons were investigated with whole cell voltage clamp. Three different effects of Ni2+ were observed to be associated with distinct Ca2+ channel activation states. 1) Nickel ions appear to stabilize closed channel states and, as a result, slow activation kinetics. 2) Nickel ions block open channels with little voltage dependence over a wide range of potentials. 3) Block of open channels by Ni2+ becomes more effective during an extended strong depolarization, and this effect is voltage dependent. Recovery from this additional inhibition occurs at intermediate voltages, consistent with the presence of two distinct types of Ni2+ block that we propose correspond to two previously identified open states of the calcium channel. These results, taken together with earlier evidence of state-dependent block by omega-agatoxin IVA, suggest that Ni2+ generates these unique effects in part by interacting differently with the external surface of the GFL calcium channel complex in ways that depend on channel activation state.  相似文献   

18.
The C. elegans tax-4 mutants are abnormal in multiple sensory behaviors: they fail to respond to temperature or to water-soluble or volatile chemical attractants. We show that the predicted tax-4 gene product is highly homologous to vertebrate cyclic nucleotide-gated channels. Tax-4 protein expressed in cultured cells functions as a cyclic nucleotide-gated channel. The green fluorescent protein (GFP)-tagged functional Tax-4 protein is expressed in thermosensory, gustatory, and olfactory neurons mediating all the sensory behaviors affected by the tax-4 mutations. The Tax-4::GFP fusion is partly localized at the sensory endings of these neurons. The results suggest that a cyclic nucleotide-gated channel is required for thermosensation and chemosensation and that cGMP is an important intracellular messenger in C. elegans sensory transduction.  相似文献   

19.
In mammals, olfactory stimuli are detected by sensory neurons at two distinct sites: the olfactory epithelium (OE) of the nasal cavity and the neuroepithelium of the vomeronasal organ (VNO). While the OE can detect volatile chemicals released from numerous sources, the VNO appears to be specialized to detect pheromones that are emitted by other animals and that convey information of behavioral or physiological importance. The mechanisms underlying sensory transduction in the OE have been well studied and a number of components of the transduction cascade have been cloned. Here, we investigated sensory transduction in the VNO by asking whether VNO neurons express molecules that have been implicated in sensory transduction in the OE. Using in situ hybridization and Northern blot analyses, we found that most of the olfactory transduction components examined, including the guanine nucleotide binding protein alpha subunit (G-alpha-olf), adenylyl cyclase type III, and an olfactory cyclic nucleotide-gated (CNG) channel subunit (oCNC1), are not expressed by VNO sensory neurons. In contrast, VNO neurons do express a second olfactory CNG channel subunit (oCNC2). These results indicate that VNO sensory transduction is distinct from that in the OE but raise the possibility that, like OE sensory transduction, sensory transduction in the VNO might involve cyclic nucleotide-gated ion channels.  相似文献   

20.
The acid sensing ion channel (ASIC) identified in rat brain and spinal cord is potentially involved in the transmission of acid-induced nociception. We have developed polyclonal antisera against ASIC, and used them to screen rat brain and spinal cord using immunocytochemistry. ASIC-immunoreactivity (-ir) is present in but not limited to the superficial dorsal horn, the dorsal root ganglia (DRG) and the spinal trigeminal nucleus, as well as peripheral nerve fibers. These observations, combined with the disappearance of ASIC-ir following dorsal rhizotomy, suggest localization of ASIC to primary afferents. DRG ASIC-ir co-localizes with substance P (SP) and calcitonin gene-related peptide (CGRP)-ir in small capsaicin-sensitive cell bodies, suggesting that ASIC is poised to play a role in the transduction of noxious stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号