首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
电化学DNA传感器作为一种新型的生物传感器,在基因诊断及药物分析等方面具有重要的应用价值。结合近年来电化学DNA传感器的研究进展,简述了其检测过程,介绍了DNA电化学传感器所使用的电极修饰材料,详细论述了探针固定技术及信号检测方法,并展望了其发展及应用前景。  相似文献   

2.
石墨烯传感器的研究进展   总被引:1,自引:1,他引:0  
范军领 《材料导报》2012,26(7):31-35
论述了石墨烯电化学和生物传感器的研究进展,包括石墨烯的直接电化学基础、石墨烯对生物小分子(Hydrogen peroxide,NADH,dopamine,etc.)的电催化活性、石墨烯酶传感器、基于石墨烯薄膜和石墨烯纳米带的实用气体传感器(可检测O2、CO和NO2)、石墨烯DNA传感器和石墨烯医药传感器(可用于检测扑热息痛)。  相似文献   

3.
电化学生物传感器是一种高效、准确检测物质浓度的一种手段,在过氧化氢、尿酸、葡萄糖、胆固醇、硝酸盐以及DNA等物质的检测中取得了丰硕的科研成果。采用一维纳米阵列为基体构筑电化学生物传感器可以改善其综合性能,获得良好的可重复性、较高的灵敏度、较低的检测极限等。本文综述了在过去五年时间内一维纳米阵列的主要合成方法,回顾和总结了近年来基于一维纳米阵列的各种电化学生物传感器的研究进展。  相似文献   

4.
光电化学传感器及其在生物分析中的应用研究进展   总被引:1,自引:0,他引:1  
赵玉婷  沈艳飞 《材料导报》2017,31(13):138-145
光电化学传感器是近年来发展起来的一种基于化学或生物识别过程的分析设备,因具有响应快速、灵敏度高、设备简单、价格低廉且易于微型化等优点,在生命分析和环境分析等领域受到了广泛关注。首先介绍了光电化学传感器的基本原理、分类及用于构建该类传感器的光电活性纳米材料,在此基础上进一步综述了光电化学传感器在生物分析中的应用,如用于DNA检测、免疫传感及酶分析等。  相似文献   

5.
电分析化学在生命科学中的应用   总被引:1,自引:0,他引:1  
汪少芸 《福建分析测试》2005,14(1):2106-2111
电分析化学在生命科学领域得到广泛的应用,电化学生物传感器是其中之一。它主要包括微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、酶传感器、电化学DNA传感器等。本人就其发展情况作一概述。  相似文献   

6.
石墨烯具有优良的光电性能和机械性能,是制备电化学生物传感器的绝佳材料。但单质石墨烯易发生卷曲、团聚以及层间堆叠,不利于在传感器中的应用。为此研究人员采取许多措施对石墨烯进行改性,从而得到石墨烯衍生物或石墨烯复合材料,并最终将其应用到电化学生物传感器的制备中。本文简要介绍了石墨烯的功能化方法及在电化学生物传感器中的应用优势,重点综述了基于石墨烯材料的电化学生物传感器,包括免疫传感器、酶传感器、生物小分子传感器、适配体传感器和DNA传感器的最新研究成果,比较分析并总结了各类传感器的优势和不足,展望了其未来的发展前景。  相似文献   

7.
目前甲醛的检测方式很多,其中电化学传感器方式检测甲醛灵敏性高、选择性好、操作简单、性能稳定,是甲醛快捷检测主要使用的手段。以电化学传感器检测甲醛的进展为主,综述了各类电化学传感器在甲醛检测中的应用,对比其检测的优缺点,并对应用前景进行展望。  相似文献   

8.
近年来,非酶纳米电化学传感器检测有机磷农药的研究受到广泛关注。非酶纳米电化学传感器具有检测成本低、操作方便、灵敏度高、响应快速等优点。碳纳米材料、纳米金属颗粒、纳米金属氧化物和纳米导电聚合物及其复合材料的出现,大大提高了有机磷农药电化学传感器的性能。随着纳米技术的出现,在合成纳米材料用于分析物特异性检测方面取得了进展,这些材料可用于构建高特异性、强选择性和经济有效的电化学传感器,以取代其他分析技术。鉴于各类纳米材料新结构的重要性,对非酶纳米电化学传感器领域的最新研究进展进行综述,并重点介绍纳米复合材料在有机磷农药检测中的应用。  相似文献   

9.
石墨烯因其独特的物理和电学性能而得到广泛关注。石墨烯基纳米材料也因其独特的性能,如高的比表面积,高的电子流动性和超低的电子噪音而被用于高性能的传感器。石墨烯/氧化石墨烯基纳米材料用于快速灵敏地检测对环境和人类健康有潜在威胁的重金属离子具有广阔的前景。本文综述了采用石墨烯和氧化石墨烯基纳米材料用于电化学检测重金属离子的最新进展。  相似文献   

10.
肾上腺素(AD)作为一种神经递质在人体内扮演重要角色,其含量的高低直接影响人体身体健康,因此对AD进行快速检测具有重要的实际意义。其检测方法中电化学方法具有灵敏度高、检测速度快、操作简便的优点,因而构建性能优异的肾上腺素电化学传感器成为研究热点。为提高传感器的电化学性能,碳纳米材料被采纳作为修饰传感器的新型材料而广泛应用,取得了检测限低、灵敏度高并有希望应用于临床检测的巨大进步。本文从碳点、石墨烯、碳纳米颗粒等碳纳米材料出发,分析AD在电极表面的电氧化还原机制,对近年来基于碳纳米材料的肾上腺素电化学传感器制备方法及检测结果进行分类统计,并对今后的检测提出展望,以期获得更有效的肾上腺素电化学传感器。  相似文献   

11.
Wei H  Li B  Li J  Dong S  Wang E 《Nanotechnology》2008,19(9):095501
Novel functional oligonucleotides, especially DNAzymes with RNA-cleavage activity, have been intensively studied due to their potential applications in therapeutics and sensors. Taking advantage of the high specificity of 17E DNAzyme for Pb(2+), highly sensitive and selective fluorescent, electrochemical and colorimetric sensors have been developed for Pb(2+). In this work, we report a simple, sensitive and label-free 17E DNAzyme-based sensor for Pb(2+) detection using unmodified gold nanoparticles (GNPs) based on the fact that unfolded single-stranded DNA could be adsorbed on the citrate protected GNPs while double-stranded DNA could not. By our method the substrate cleavage by the 17E DNAzyme in the presence of Pb(2+) could be monitored by color change of GNPs, thereby Pb(2+) detection was realized. The detection of Pb(2+) could be realized within 20?min, with a detection limit of 500?nM. The selectivity of our sensor has been investigated by challenging the sensing system with other divalent metal ions. Since common steps such as modification and separation could be successfully avoided, the sensor developed here could provide a simple, cost-effective yet rapid and sensitive measurement tool for Pb(2+) detection and may prove useful in the development of sensors for clinical toxicology and environmental monitoring in the future.  相似文献   

12.
We have successfully developed electrochemical sensors based on functionalized nanostructured materials for voltammetric analysis of toxic metal ions. Glycinylurea self-assembled monolayers on mesoporous silica (Gly-UR SAMMS) were incorporated in carbon paste electrodes for the detection of toxic metal ions such as lead, copper, and mercury based on adsorptive stripping voltammetry (AdSV). The electrochemical sensor yields a linear response at a low ppb level of Pb2+ (i.e., 2.5-50 ppb) after a 2-min preconcentration period, with reproducible measurements (%RSD = 3.5, N = 6) and an excellent detection limit (1 ppb). By exploiting the interfacial functionality of Gly-UR SAMMS, the sensor is selective for the target species, does not require the use of a mercury film, and can be easily regenerated in dilute acid solution. The rigid, open, parallel pore structure, combined with suitable interfacial chemistry of SAMMS, also results in fast analysis times (2-3 min). The nanostructured SAMMS materials enable the development of miniature sensing devices that are compact and low cost, have low energy consumption, and are easily integrated into field-deployable units.  相似文献   

13.
Shen L  Chen Z  Li Y  He S  Xie S  Xu X  Liang Z  Meng X  Li Q  Zhu Z  Li M  Le XC  Shao Y 《Analytical chemistry》2008,80(16):6323-6328
An electrochemical DNAzyme sensor for sensitive and selective detection of lead ion (Pb(2+)) has been developed, taking advantage of catalytic reactions of a DNAzyme upon its binding to Pb(2+) and the use of DNA-Au bio-bar codes to achieve signal enhancement. A specific DNAzyme for Pb(2+) is immobilized onto an Au electrode surface via a thiol-Au interaction. The DNAzyme hybridizes to a specially designed complementary substrate strand that has an overhang, which in turn hybridizes to the DNA-Au bio-bar code (short oligonucleotides attached to 13 nm gold nanoparticles). A redox mediator, Ru(NH3)6(3+), which can bind to the anionic phosphate of DNA through electrostatic interactions, serves as the electrochemical signal transducer. Upon binding of Pb(2+) to the DNAzyme, the DNAzyme catalyzes the hydrolytic cleavage of the substrate, resulting in the removal of the substrate strand along with the DNA bio-bar code and the bound Ru(NH3)6(3+) from the Au electrode surface. The release of Ru(NH3)6(3+) results in lower electrochemical signal of Ru(NH3)6(3+) confined on the electrode surface. Differential pulse voltammetry (DPV) signals of Ru(NH3)6(3+) provides quantitative measures of the concentrations of Pb(2+), with a linear calibration ranging from 5 nM to 0.1 microM. Because each nanoparticle carries a large number of DNA strands that bind to the signal transducer molecule Ru(NH3)6(3+), the use of DNA-Au bio-bar codes enhances the detection sensitivity by five times, enabling the detection of Pb(2+) at a very low level (1 nM). The DPV signal response of the DNAzyme sensor is negligible for other divalent metal ions, indicating that the sensor is highly selective for Pb(2+). Although this DNAzyme sensor is demonstrated for the detection of Pb(2+), it has the potential to serve as a general platform for design sensors for other small molecules and heavy metal ions.  相似文献   

14.
A variety of methods have been developed for the detection of the binding of the complementary strand of DNA to a gene chip using electrical rather than the established optical signal techniques. Chip-based DNA sensors offer sensitivity, specificity, parallelisation and miniaturisation for the detection of selected DNA sequences or mutated genes associated with human diseases. Problems associated with the established fluorescence-based optical detection technique include the high equipment costs and the need to use sophisticated numerical algorithms to interpret the data. These problems generally limit its use to research laboratories and make it hard to adapt this detection scheme for on-site or point-of-care use. An electrical readout might be a solution to these problems. A review of a number of different approaches to achieve an electrical readout for a DNA chip is presented. The review covers various methods that are based on the use of metal nanoparticles as labels and also electrochemical methods that use polymer-modified electrodes, DNA-specific redox reporters, and DNA-mediated charge transport techniques.  相似文献   

15.
Recent progress in electrochemical and optical sugar sensors based on phenylboronic acid (PBA) and its derivatives as recognition components is reviewed. PBAs are known to bind diol compounds including sugars to form cyclic boronate esters that are negatively charged as a result of the addition of OH? ions from solution. Based on the formation of PBA charged species, sugars and their derivatives can be detected by means of electrochemical and optical techniques. For the development of PBA-based electrochemical sensing systems or sensors, PBA is modified with a redox-active marker, because PBA itself is electrochemically inactive, and ferrocene derivatives are often employed for this purpose. Ferrocene-modified PBAs have been used as redox-active additives in solution for the electrochemical detection of sugars and derivatives. PBA-modified electrodes have also been constructed as reagentless electrochemical sensors, where PBAs are immobilized on the surface of metal and carbon electrodes through mainly two routes: as a self-assembled monolayer film and as a polymer thin film. PBA-modified electrodes can be successfully used to detect sugars and derivatives through potentiometric and voltammetric responses. In addition, PBA-modified electrodes can be used for the immobilization of glycoenzymes on an electrode surface by the formation of boronate esters with carbohydrate chains in the glycoenzymes, thus resulting in enzyme biosensors. For the development of PBA-based optical sensors, a variety of chromophores and fluorophores have been coupled with PBA. Azobenzene dyes have been most frequently used for the preparation of colorimetric sugar sensors, in which the absorption wavelength and intensity of the dye are dependent on the type and concentration of added sugars. The sensitivity of the sensors is significantly improved based on multi-component systems in which alizalin red S, pyrocatechol violet, starch–iodine complex, and cyclodextrin are employed as indicators. Anthracene, pyranine, fluorescein, and rhodamine dyes have been used as fluorophores for fluorescence sensors. These dyes have been used in solution or immobilized in films, hydrogels, nanospheres, and quantum dots (QDs) to enhance the sensitivity. QDs-based sensors have been successfully applied for continuous monitoring of glucose in cells. Holographic glucose sensors have also been developed by combining PBA-immobilized hydrogels and photonic crystal colloidal arrays.  相似文献   

16.
综述了金、银等金属纳米带的制备方法(真空冷凝法和模板法)及其在电化学传感器中的应用,展望了其发展前景.着重介绍了真空冷凝法的制备原理、装置、过程等;讨论了模板法中不同类型的有机分子模板(模板作用、兼顾模板和还原剂作用)、制备过程中的反应体系(水热、超声等)、模板分子与金属离子的物质的量比和反应时间等对纳米带微观形貌的影响.  相似文献   

17.
For sensors detecting immobilized biomarkers, the interface between the surface and the fluid medium plays an important role in determining the levels of signal and noise in the electrochemical detection process. When protein is directly immobilized on the metal electrode, denaturation of the protein by surface–protein interaction results in low activity and low signal level. A conducting polymer‐based interface can prevent the protein conformation change and alleviate this problem. A DNA dendrimer is introduced into the interfacial film on the sensor surface to further improve the sensor performance. DNA dendrimer is a nanoscale dendrite constructed of short DNA sequences, which can be easily incorporated into the abiotic conducting polymer matrix and is biocompatible with most biological species. In this work, DNA dendrimer and polypyrrole (DDPpy) form the bio/abiotic interface on electrochemical sensors. Detection of two salivary protein markers (IL‐8 and IL‐1β) and one mRNA salivary marker (IL‐8) is used to demonstrate the efficiency of the DDPpy sensor. A limit of detection (LOD) of protein of 100–200 fg mL?1 is achieved, which is three orders of magnitude better than that without the DNA dendrimer interface. An LOD of 10 aM is established for IL‐8 mRNA. The typical sample volume used in the detection is 4 µL, thus the LOD reaches only 25 target molecules (40 yoctomole).  相似文献   

18.
Thin-film sensors based upon evaporated layers of chalcogenide glasses and sensitive to silver, copper, and lead ions have been developed. The optimal contents of the membranes were established and the electrochemical characteristics were investigated. It was shown that the sensitivity, detection limit, response time, reproducibility, and selectivity to interfering ions are in good agreement with those for traditional bulk ion-selective electrodes.  相似文献   

19.
An electrochemical DNA detection method has been developed for the sensitive quantification of an amplified 406-base pair human cytomegalovirus DNA sequence (HCMV DNA). The assay relies on (i) the hybridization of the single-stranded target HCMV DNA with an oligonucleotide-modified Au nanoparticle probe, (ii) followed by the release of the gold metal atoms anchored on the hybrids by oxidative metal dissolution, and (iii) the indirect determination of the solubilized AuIII ions by anodic stripping voltammetry at a sandwich-type screen-printed microband electrode (SPMBE). Due to the enhancement of the AuIII mass transfer by nonlinear diffusion during the electrodeposition time, the SPMBE allows the sensitive determination of AuIII in a small volume of quiescent solution. The combination of the sensitive AuIII determination at a SPMBE with the large number of AuIII released from each gold nanoparticle probe allows detection of as low as 5 pM amplified HCMV DNA fragment.  相似文献   

20.
Nowadays, sensitive biosensors with high selectivity, lower costs and short response time are required for detection of DNA. The most preferred materials in DNA sensor designing are nanomaterials such as carbon and Au nanoparticles, because of their very high surface area and biocompatibility which lead to performance and sensitivity improvements in DNA sensors. Carbon nanomaterials such as carbon nanotubes (CNTs) can be considered as a suitable DNA sensor platform due to their high surface‐to‐volume ratio, favourable electronic properties and fast electron transfer rate. Therefore, in this study, the CNTs which are synthesised by pulsed AC arc discharge method on a high‐density polyethylene substrate are used as conducting channels in a chemiresistor for the electrochemical detection of double stranded DNA. Moreover, the response of the proposed sensor is investigated experimentally and analytically in different temperatures, which confirm good agreement between the presented model and experimental data.Inspec keywords: electrochemical sensors, polymers, arcs (electric), biological techniques, nanosensors, carbon nanotubes, DNAOther keywords: C, chemiresistor, double stranded DNA detection, CNT, electronic properties, surface‐to‐volume ratio, nanoparticles, biosensors, electrochemical detection, high‐density polyethylene substrate, pulsed AC arc discharge method, electron transfer rate, carbon nanomaterials, carbon nanotube‐based DNA sensor  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号