首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
使用正交实验法, 研制出满足嵌入式高温共固化复合材料阻尼结构制作工艺要求的黏弹性材料组分, 提出使用刷涂工艺代替压片工艺制备黏弹性材料薄膜, 并对两种工艺制备的碳纤维/双马来酰亚胺(T300/QY8911)复合材料试件进行层间剪切测试, 获得了薄膜厚度与层间最大剪切应力的变化关系, 实验数据表明: 刷涂工艺能提高嵌入式高温共固化复合材料阻尼结构层间结合性能10%以上, 而且阻尼层越薄, 提高幅度越大; 失效表面证明: 刷涂工艺所制得试件能在阻尼薄膜与复合材料界面间形成互穿网络结构。  相似文献   

2.
嵌入式高温共固化复合材料阻尼结构层间结合性能   总被引:1,自引:0,他引:1  
使用正交实验法,研制出满足嵌入式高温共固化复合材料阻尼结构制作工艺要求的黏弹性材料组分,提出使用刷涂工艺代替压片工艺制备黏弹性材料薄膜,并对两种工艺制备的碳纤维/双马来酰亚胺(T300/QY8911)复合材料试件进行层间剪切测试,获得了薄膜厚度与层间最大剪切应力的变化关系,实验数据表明:刷涂工艺能提高嵌入式高温共固化复合材料阻尼结构层间结合性能10%以上,而且阻尼层越薄,提高幅度越大;失效表面证明:刷涂工艺所制得试件能在阻尼薄膜与复合材料界面间形成互穿网络结构.  相似文献   

3.
钛基梯度功能材料电场激活原位合成   总被引:1,自引:1,他引:0  
本文采用电场激活压力辅助燃烧合成工艺(FAPAS),以Ti-Al和Ni-Ti-C体系的放热反应,实现了TiC陶瓷颗粒增强的Ni基复合材料的原位合成以及Ti-TiAl-(TiC)pNi功能梯度材料的同步连接制备。借助SEM和XRD等手段分析了各层界面的相组成和微观结构以及界面元素扩散特征,探讨了电场对功能梯度材料制备过程中各层间界面的冶金特征及连接结构的影响,揭示了电场作用下,利用放热体系进行原位合成和扩散连接的机制。研究结果表明,外加电场条件下,钛粉和铝粉反应形成TiAl相产生的化学热促进了钛基板与TiAl层界面原子的扩散溶解,是两者形成连接的关键;钛-碳反应热促进TiC/Ni细晶复合结构形成,提高了TiC颗粒与基体之间的润湿性和复合材料层的致密度。  相似文献   

4.
对SiC颗粒增强铝合金基梯度复合材料的拉伸力学性能进行了研究。提出了一种新的材料力学性能评价指标——梯度系数Kx。理论研究表明,金属基梯度复合材料(MMGC)各组分性能的差异使其在拉伸变形时产生了三轴应力。实验及断口分析表明,由拉伸试验获得的材料平均力学性能指标弹性模量E和屈服强度σ0.2近似符合ROM法则;此类材料的拉伸力学性能受SiC颗粒梯度分布方式的影响。外层为基体,芯部为高SiC含量的材料拉伸断口具有韧性断裂特征,能发挥其性能优势。反之,断口表现出脆性断裂特征,降低了材料的力学性能;受多种因素影响,裂纹穿过层间界面时,会引起断裂方式和扩展方向的改变。当梯度层间SiC颗粒体积分数相差较大时,材料会产生分层开裂;梯度系数Kσb和Kδ可反映材料的梯度分布方式和性能的优劣程度,梯度系数KE则反映了材料性能的稳定性程度。  相似文献   

5.
为了研究碳纤维增强树脂(CFRP)复合材料层间力学性能在高温环境中的老化失效行为,设计了CFRP复合材料层间拉伸和层间剪切实验,在高温(80℃)环境中进行0(未老化)、 120 h、 240 h、 360 h、 480 h、 600 h和720 h的老化测试,分析CFRP层间失效强度和失效形式随老化时间的变化规律,得到随高温老化的二次应力准则响应面。建立CFRP复合材料层间力学性能预测模型,得到不同老化衰减系数下的退化模型,并通过CFRP复合材料层间仿真模型进行了验证。结果表明:随着高温老化时间的增加,层间拉伸和层间剪切强度总体上都发生了一定程度的退化,层间拉伸时更容易发生碳纤维丝剥离,层间剪切发生局部的树脂剥离,纤维之间的分层更加明显,高温老化使树脂与纤维丝的界面结合力显著下降。通过CFRP复合材料层间力学性能随高温老化的二次应力准则,计算不同老化时间后的内聚力模型参数,预测CFRP复合材料在高温老化条件下的层间强度,发现仿真与实验误差小于10%,说明了CFRP复合材料层间失效预测模型的准确性。  相似文献   

6.
航天器热防护材料研究现状与发展趋势   总被引:1,自引:0,他引:1  
热防护系统中所采用的多层复合热防护材料的层间界面结合和小块材料之间的连接对航天器的可靠性有很大影响,目前二者都存在一定的缺陷.依据功能梯度材料和C/C复合材料的理论,将高导热率碳泡沫和低导热率碳微球设计成密度和热导率功能梯度热防护碳泡沫材料,使其具备组分之间无层间界面和小块材料间易于连接等特点.  相似文献   

7.
以光导纤维为模型纤维,利用激光干涉法测定了载荷作用下的玻璃纤维增强聚合物复合材料的纤维应力、材料成型时纤维预应力的产生过程及纤维应力随环境温度的变化。实验表明,纤维的应力随界面物质分子特征及界面层结构的不同而不同。其原因是在应力传递过程中,不同界面层具有不同的应力梯度及变形能力。在两相模型中,引入了应力传递系数 k。能形成韧性界面层的ESPCEG 及γ-UPMS 是较好的处理剂。  相似文献   

8.
功能梯度材料的断裂与屈曲驱动断裂的简化分析   总被引:1,自引:1,他引:0  
王刚锋  亢一澜 《工程力学》2002,19(1):103-108
作为一类先进的复合材料,功能梯度材料(FGM)能综合利用多种材料的物理性能,同时材料性质的连续变化也使其具有许多优越的力学性能。本文对功能梯度材料中平行于界面的裂纹的断裂参数进行了计算,并分析了梯度变化的薄膜在压应力作用下的屈曲驱动扩展。研究结果表明:功能梯度材料能有效地减小界面中的应力集中及它对材料中缺陷的作用,从而不同程度地提高了材料的强度和韧性。  相似文献   

9.
高铍含量的铍铜(Cu-Be)合金时效后抗拉强度可达1400 MPa以上,伸长率却不到5%,呈现显著的强度-塑性倒置关系,严重影响了合金服役的安全可靠性.高强Cu-Be合金塑性变形时产生的局部应变集中现象是导致其低塑性的根本原因,将层状非均质构型设计的思想运用于Cu-Be合金,构建Cu-Be/Cu-Zn层状金属基复合材料,可以有效减少该现象的产生,有望获得高强塑性的层状金属基复合材料.运用塑性变形法制备层状金属基复合材料简单易行,受到广泛关注.前人对层状金属基复合材料轧制变形规律的研究主要集中在复合材料金属组元方面,对界面过渡层变形规律研究较少.本工作利用真空热压复合及后续冷轧变形的方式制备了Cu-Be/Cu-Zn层状金属基复合材料,利用光学显微镜(OM)、场发射扫描电镜(FE-SEM)结合能谱仪(EDS)、显微维氏硬度计对Cu-Be/Cu-Zn层状金属基复合材料冷轧变形行为及界面过渡层的演变进行了研究.研究结果表明,Cu-Be/Cu-Zn层状金属基复合材料冷轧前金属层间界面基本呈平直状,界面结合良好且无裂纹、孔洞等缺陷.当冷轧压下率不超过50%时,Cu-Be/Cu-Zn层状金属基复合材料发生不均匀的宏观变形,Cu-Zn层在板材厚度方向的变形量明显大于Cu-Be层和界面过渡层,当冷轧压下率为35%时,界面过渡层的厚度仅减小8.3%,不均匀的塑性变形导致Cu-Be/Cu-Zn界面由平直状态变为波浪状态;当冷轧压下率超过65%时,层状金属基复合材料内部发生均匀、协调的变形,各层厚度基本按照总冷轧压下率变化.不同冷轧压下率下,显微硬度最高的均为过渡层,其次是Cu-Be层,而Cu-Zn层的显微硬度最低.这是因为在层状金属基复合材料冷轧变形过程中,界面过渡层主要起到协调变形的作用,处于显著剪切应力状态,会产生额外的背应力强化.本工作探讨了界面过渡层在Cu-Be/Cu-Zn层状金属基复合材料冷轧过程中的宏观变形以及强化机理,有助于进一步阐明层状金属基复合材料塑性加工变形规律并合理制定其塑性加工工艺.  相似文献   

10.
研究非理想界面下功能梯度压电/压磁层状半空间结构中SH波的传播特性。界面性能由“弹簧”模型表征, 假设功能梯度压电层材料性能沿层厚度方向指数变化, 其表面为电学开路。推导了频散方程, 并结合数值算例分析了界面性能、功能梯度压电层的梯度变化和厚度对相速度的影响。研究结果对功能梯度压电/压磁复合材料在声波器件中的应用提供了理论依据。  相似文献   

11.
Microstructural evolution of Al2024 alloy, consisting of precipitates, subjected to surface mechanical grinding treatment (SMGT) was investigated to reveal the role of strain and strain rate in structural refinement. Following SMGT, a gradient nanostructure was formed on the coarse-grained substrate, with a significant increase in nanohardness to over 1 GPa at the top surface. At low strains, the presence of particles and increasing strain rate stimulated the rapid transformation of dislocation configurations. However, at larger strains, increasing strain rate effectively stabilized the fine nanoscale structure. Strain gradient from the deformed layers and near the particles significantly promoted the development of microstructure by increasing the boundary misorientations, which was more significant at high strain rates. In particular, at very high rates and large strain gradients, extreme grain sizes may be induced. The presence of minority grains with size below 10 nm in the top 20-μm layers revealed that dislocation processes still operated at sub-nanoscale level. The dislocation-governed ductility was expected to be improved in the nanostructured materials.  相似文献   

12.
李玄  赵科  刘金铃 《复合材料学报》2023,40(2):1118-1128
为提高铝基材料的高温力学性能以满足其在573 K以上用于航空航天装备结构件的性能需求,采用高能球磨结合真空热压烧结工艺制备了体积分数高达20vol%的纳米Al2O3颗粒(146 nm)增强铝基复合材料,对其微观结构和高温压缩性能进行了研究。结果表明:纳米Al2O3颗粒均匀分散于超细晶铝基体中,且复合材料完全致密;该复合材料具有优异的高温压缩性能:应变速率为0.001/s时,473 K时压缩强度高达380 MPa,即使673 K时依然高达250 MPa,比其他传统铝基材料提高至少1倍;通过对其流变应力进行基于热激活的本构模型拟合可以发现,该复合材料具有高的应力指数(30)和表观激活能(204.02 kJ/mol)。这是由于高体积分数纳米颗粒能够有效钉扎晶界,并与铝基体形成热稳定的界面结合,显著提高复合材料的组织热稳定性,而且在变形过程中与晶界有效阻碍位错运动,显著提高复合材料的热变形门槛应力(在473~673 K时为190.6~328.4 MPa),其热变形过程可以由亚结构不变模型进行解释。  相似文献   

13.
Recent experiments on particle-reinforced metal-matrix composite materials have shown particle size effects. Small particles tend to give larger plastic work hardening than large particles at the same particle volume fraction. Prior models used to study the particle size effect are based on the strain gradient plasticity theories, and these models are mainly axisymmetric models with vanishing lateral stress tractions in order to represent the uniaxial tension condition. However, the prior results fall short to agree with the experimental data. A three-dimensional (3D) unit-cell model is adopted in the present study. The periodic boundary conditions are imposed for the 3D unit cell to ensure the compatibility of the unit cell before and after the deformation. The particles are elastic, while the metal matrix is elastic-plastic and is characterized by the conventional theory of mechanism-based strain gradient plasticity, which is established from the Taylor dislocation model but does not involve the higher-order stress. It is shown that the 3D unit-cell model with the periodic boundary conditions gives better agreements with the experimental data than the unit-cell model with the traction-free boundary conditions on the lateral surfaces.  相似文献   

14.
采用三点弯曲法,对SiC颗粒增强铝合金基梯度复合材料的弯曲力学性能进行了研究,提出了梯度复合材料抗弯强度比R1和R2两个新的力学性能评价指标。结果表明:金属基梯度复合材料(MMGC)的弯曲力学性能与其基本组分力学性能的关系不符合ROM法则,材料的抗弯强度和最大挠度强烈地受到SiC颗粒梯度分布方式与弯曲方向的影响;当基体处于受拉侧,高SiC含量组分处于受压侧时,MMGC能充分发挥其性能优势;MMGC在受梯度应力作用下的力学性能优势和其方向性特征受到材料状态、材料宏观不均匀性和微观连续性等因素的影响;MMGC的抗弯强度比R1反映了这类材料的性能优势,而抗弯强度比R2则反映了材料的方向性能特征。  相似文献   

15.
High strain rate superplastic deformation potential of an Al–4.5%Mg matrix composite reinforced with 10% SiC particles of 3 μm nominal size was investigated. The material was manufactured using powder metallurgical route and mechanical alloying which was then processed by equal channel angular extrusion (ECAE). The composite showed a high resistance to static recrystallization. The manufacturing operations atomized SiC particles to nanoscale particles and the severe plastic deformation process resulted in a dynamically recrystallized microstructure with oxide dispersoids distributed homogeneously throughout the matrix. These particles stabilized the ultra-fine grained microstructure during superplastic (SP) deformation. Testing under optimum conditions at constant strain rates led to tensile elongations >360%, but it could be further increased by control of the strain rate path. Transmission electron microscope (TEM) studies showed that the low angle boundary sub-grain structure obtained on heating to the SP deformation temperature developed on straining into a microstructure containing high angle boundaries capable of sustaining grain boundary sliding.  相似文献   

16.
Discussion     
Abstract

The effects of sulphur on hot ductility of niobium steels, in which cracking susceptibility on the continuously cast slab surface is highest, have been studied by means of hot tensile testing with particular emphasis on the segregation of sulphur atoms to the matrix/grain boundary Nb(C,N) precipitate interfaces. When low manganese niobium steels are solution treated at high temperature and then deformed at temperatures ranging from the low temperature γ to the γ/α duplex phase regions, two troughs appear in the ductility versus strain rate curve, accompanied by intergranular fracture of γ, at strain rates of ~1 s?1 and 10?3?10?4 s?1. The loss of ductility at high and low strain rates is caused by dynamic precipitation of iron rich (Fe,Mn)S and Nb(C,N) particles, respectively, both within γ grains and on the γ grain boundaries. The dependence on sulphur content is obvious at high strain rates, but it is found that the loss of ductility owing to Nb(C,N) precipitation is also reduced by decreasing the sulphur content to less than 10 ppm. This can be explained by the reduced segregation of sulphur atoms to the grain boundary Nb(C,N) precipitate/matrix interfaces, leading to suppressed decohesion and consequent nucleation of microvoids which result in ductile intergranular fracture of γ.

MST/1425  相似文献   

17.
Summary Constitutive modeling for the particle size effect on the strength of particulate-reinforced metal matrix composites is investigated. The approach is based on a gradient-dependent theory of plasticity that incorporates strain gradients into the expression of the flow stress of matrix materials, and a finite unit cell technique that is used to calculate the overall flow properties of composites. It is shown that the strain gradient term introduces a spatial length scale in the constitutive equations for composites, and the dependence of the flow stress on the particle size/spacing can be obtained. Moreover, a nondimensional analysis along with the numerical result yields an explicit relation for the strain gradient coefficient in terms of particle size, strain, and yield stress. Typical results for aluminum matrix composites with ellipsoidal particles are calculated and compare well with data measured experimentally.  相似文献   

18.
Tensile tests were conducted on nylon 6/organoclay nanocomposites, with and without POE-g-MA rubber particles, over a range of temperatures and strain rates 10−4–10−1 s−1. It was shown that the 0.2% offset yield strength varied with both temperature and strain rate which could be described by the Eyring equation thus providing results on the activation energy and activation volume for the physical processes involved. In addition, their tensile deformation mechanisms were characterized using the tensile dilatometry technique to differentiate the dilatational processes (e.g., voiding/debonding caused by the organoclay and rubber particles or matrix) and shear yielding (e.g., matrix with zero volume change). Dilatometric responses indicated that the presence of POE-g-MA rubber particles did not alter the shear deformation mode of neat nylon 6. In contrast, the presence of organoclay layers changed the tensile yield deformation behavior of nylon 6 matrix from dominant shear yielding to combined shear yield plus dilatation associated with delaminations of nanoclay platelets. In nylon 6/organoclay/POE-g-MA ternary nanocomposite, the volume strain response indicated that the POE-g-MA rubber particles promoted shear deformation and suppressed delamination of the organoclay layers. Supports for the deformation mechanisms deduced from the tensile dilatometry tests were corroborated by optical microscopy and transmission electron microscopy micrographs of the studied materials.  相似文献   

19.
为研究新型传感器材料,在通用有效介质理论的基础上,提出了炭黑填充型导电复合材料的压阻特性数学计算模型,定量地得出炭黑颗粒的基本特征参数、体积分数和聚合物基体的弹性模量在复合材料压阻规律中的影响。分别以硅橡胶和高密度聚乙烯为基体相,三种不同粒径的炭黑为导电相,制备了炭黑填充型复合材料,对计算模型进行了实验验证。在炭黑颗粒分布均匀、炭黑体积分数在渗流阈值附近和外加压力≤2 MPa等三个边界条件下,数学计算模型与实验结果基本吻合,且压力-电阻变化规律一致。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号