首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
通过无模板自组装法与自牺牲制孔方式相结合,制备金属-氮(M-N)原位共掺杂的多孔碳球材料(M/N-CS,M=Cu、Fe或Ni)。该方法通过二苯碳酰二肼、金属离子与糠醛自组装形成聚合物球,在碳化过程中球体中不稳定的含氮微区分解形成多孔结构,同时原位形成具有高催化活性的M-NX活性位点。通过控制金属源和多重反应条件,既能保证碳化阶段碳球结构的稳定,又可实现材料的孔隙率、孔径及形貌的灵活变化。利用SEM、TEM、XRD、物理吸附及XPS测试分别对材料的结构和掺杂进行分析。所得材料用于电催化氧还原测试,其中Fe/N-CS材料的催化反应初始电位和半波电位分别为0.91V和0.79V(vs.RHE),并以4e-转移方式进行反应。同时,催化材料表现出远高于商业Pt/C催化剂的稳定性与耐甲醇性。  相似文献   

2.
低成本、高活性、耐久性好的高效电催化剂对直接甲酸燃料电池的应用起着至关重要的作用。本文采用简单经济的方法,研究了以三维层状多孔结构嵌入氮掺杂石墨烯(NG)的氮掺杂空心碳纳米球(NHCN)负载Pd纳米粒子作为直接甲酸燃料电池催化剂。由于具有独特的氮原子掺杂三维互联层状多孔结构,Pd纳米颗粒尺寸较小的Pd/NHCN@NG催化剂具有较大的催化活性表面积、优越的电催化活性、较高的稳态电流密度和较强的抗CO中毒能力,明显超过传统的Pd/C、Pd/NG和Pd/NHCN催化剂对甲酸电氧化的催化性能。通过优化HCN/GO比,当HCN/GO质量比为1∶1时,Pd/NHCN@NG催化剂对甲酸的催化氧化性能最佳,其活性是Pd/C的4.21倍。本工作开发了一种优越的碳基电催化剂载体材料,为燃料电池的发展带来了广阔的应用前景。  相似文献   

3.
针对碳电极材料存在比电容小、能量密度低的问题,采用异质成核合成路径制备了新型的碗状空心碳微球,进一步以尿素为氮源,通过水热法制备了高性能氮掺杂碗状空心碳微球。采用X射线衍射仪、场发射扫描电子显微镜、能谱仪、傅立叶红外光谱仪和X射线光电子能谱分析仪对碗状空心碳微球和氮掺杂碗状空心碳微球的形貌及结构进行表征,并分析了氮掺杂对碗状空心碳微球的电化学性能。实验结果表明:氮掺杂对碗状空心碳微球的电化学性能有显著的改善,在1 A/g的电流密度下,氮掺杂碗状空心碳微球的比电容(235.5 F/g)远高于碗状空心碳微球的比电容(121.0 F/g),此外,氮掺杂碗状空心碳微球在3 A/g的电流密度下循环5 000次后,其比电容保持率为78.3%。  相似文献   

4.
碳材料是极具潜力的超级电容器电极材料, 但是其容量较低。异质原子掺杂, 尤其是氮掺杂, 是大幅度提高碳材料电化学性能的有效方法。但是在碳材料中实现高含量的活性氮掺杂仍极具挑战。本研究通过Si-O-Si网络和氧化铝之间的相互作用成功调节碳材料的掺氮种类及其含量。除此之外, 通过调节前驱体组成, 碳材料的结构可以从珊瑚状转变为三维结构。在反应中, 氧化物中的氧原子可以和碳材料中氮原子成键, 氮原子不易逃离, 从而实现高含量氮掺杂(5.29at%@1000 ℃)。另一方面, 相互作用使碳材料孔体积增大(1.78 m3·g-1)和孔径分布加宽(0.5~60 nm)。因此, 获得的富氮掺杂碳材料具有302 F·g-1@1 A·g-1的高容量和177 Fg-1@120 A·g-1的杰出倍率性能。此独特的固氮方法是一种有潜力的制备高性能超级电容器电极材料的策略。  相似文献   

5.
氢能因热值高、燃烧产物无污染等优良特性,成为目前新型能源研究的焦点,有望成为化石能源的理想替代品。电催化水分解作为最具前景的氢气制备方法,包含两个半反应:析氧反应(OER)和析氢反应(HER)。其中OER目前主要采用贵金属作为催化剂,但其高成本极大地限制了电催化产氢的工业化。基于Co 3O 4的Co基掺杂氧化物具有成本低廉、催化活性高且稳定性强等优良特性。目前对于Co基掺杂氧化物的研究主要集中于探究掺杂不同金属元素(Zn,Ni,Fe等)对其催化活性的影响,极少研究掺杂惰性氧化物对其催化活性的影响。合成了一种CoFeNiZn复合氧化物,且具有优良的电催化活性和稳定性。在1 mol/L KOH的电解液中,10 mA/cm 2的电流密度下,CoFeNiZn复合氧化物过电势(η10)为310 mV,塔菲尔斜率(Tafel slope)为40 mV/dec,相比原始CoFeNi氧化物(η10为400 mV)过电势降低了90 mV。CoFeNiZn催化剂催化性能的提高主要是由于以惰性ZnO作为基质可有效地分散催化活性物质,并充分暴露CoFeNi氧化物的催化活性位点。这一基于催化材料掺杂非活性物质提高催化剂催化活性的发现可以为现有催化剂开发提供新的思路。  相似文献   

6.
通过一步火焰辅助热解法制备不同Mn掺杂量的嵌碳TiO2微球, 利用X射线衍射仪(XRD)、场发射扫描电镜(FESEM)、紫外可见漫反射谱(DRS)、X射线能谱(XPS)、拉曼光谱对其进行表征。SEM和XRD结果表明所制备的TiO2为微球形貌, 且具有锐钛矿晶型, XPS和Raman分析表明Mn掺入TiO2晶格, 紫外可见漫反射谱显示引入Mn后可增强对可见光的吸收。Mn掺杂嵌碳TiO2微球在可见光下对亚甲基蓝(MB)具有更强的降解能力。与其他方法相比, 本方法具有简单, 便捷, 对环境友好, 无需热处理的优点, 可用于制备其他金属元素掺杂的样品, 具有较大的应用潜力。  相似文献   

7.
中空纤维陶瓷膜具有装填密度高, 传质阻力低, 使用寿命长等优点, 被广泛用于膜分离领域。高度非对称结构的中空纤维膜有利于同时实现高通量与高截留率, 本研究采用共挤出法制备双层中空纤维陶瓷复合膜, 内外层纺丝液分别掺杂平均粒径为1 μm和300 nm的α-Al2O3粉体。系统考察了内层纺丝液TiO2掺杂量、外层纺丝液Al2O3/聚醚砜(PESf)质量比和煅烧温度对膜的结构与性能的影响。结果表明, 在内层纺丝液TiO2掺杂量为2wt%, 外层纺丝液Al2O3/PESf质量比为5.60, 烧结温度为1350 ℃的最优条件下, 中空纤维膜断裂负荷为24 N、平均孔径为0.15 μm、去油率为97.5%。  相似文献   

8.
氧还原反应缓慢的动力学过程严重限制了燃料电池的能量转换效率, 而商用Pt/C催化剂成本太高、资源稀缺、稳定性差, 需要寻找合适的材料来取代商用的Pt/C催化剂。近年来, 氮掺杂多孔碳材料因其独特的物理和化学特性吸引了大量的关注。本文使用富含氮元素的可再生土豆作为生物质前驱体, 通过简单的一步热解过程和KOH活化方法相结合制备出了一系列氮掺杂多孔碳电催化剂; 并系统研究了KOH用量和活化温度对碳基体孔结构和电催化性能的影响。结果表明, 当活化温度为750 ℃、KOH与碳的质量比为3/1时, 所制备的催化剂(NPC-750)的氧还原活性最高, 起始电位和半波电位分别达到0.89和0.79 V (vs. RHE), 极限电流密度达到5.53 mA?cm -2。NPC-750优异的氧还原催化活性主要归因于其发达的孔结构、高的比表面积(1134.2 m 2?g -1)和合适的氮含量(1.57at%)。同时, 优异的循环稳定性和抗甲醇中毒性能进一步说明这些生物多孔碳材料是潜在的低成本氧还原电催化剂。此外, 这些高比表面积多孔碳在超级电容、吸附/分离、催化以及电池等领域也具有潜在的应用前景。  相似文献   

9.
中温固体氧化物燃料电池(IT-SOFC)有助于国家的碳中和战略,但其阴极材料难以兼顾热兼容性和催化活性。为此,基于多元素耦合的高熵策略,本研究合成了高熵阴极材料GdBa(Fe0.2Mn0.2Co0.2Ni0.2Cu0.2)2O5+δ(HE-GBO),具有双过氧化物结构,与Gd0.1Ce0.9O2-δ(GDC)有良好的化学兼容性,协调了与催化活性之间的平衡性。采用HE-GBO阴极的对称电池在800℃下的极化电阻(Rp)为1.68?·cm2,而HE-GBO-GDC(质量比7:3)复合阴极的Rp因引入GDC而显著降低(800℃下Rp为0.23?·cm2)。采用HE-GBO和HE-GBO-GDC阴极组装树枝状微通道阳极支撑单电池,在800℃的最大功率密度分别达到972....  相似文献   

10.
以酚醛预聚体和苯乙烯为原料通过水热法一步合成中空聚合物球(HPS),再以三氯化磷为反应剂通过傅-克反应对HPS处理得到含磷交联聚合物,经高温炭化和KOH活化制备磷掺杂中空碳球(AP-HCS)。采用FT-IR,TG,SEM,TEM,Raman,BET,XPS等手段对含磷聚合物和碳材料的组成、结构与形貌进行表征,测试碳材料在1 mol/L H2SO4介质中的电容性能。结果表明:AP-HCS的比表面积可达2177 m2/g,在1 A/g电流密度下,比电容为288 F/g,5 A/g电流密度下经循环充放电5000次后比电容值仍能保持88.9%,具备良好的电容性能。  相似文献   

11.
金属纳米材料人工酶以其高稳定性和低成本的特点而被广泛用于生物传感与催化领域。本研究采用[1-甲基-3- 乙基咪唑][二氰胺]离子液体([EMIM][DCA])与氯化钌反应形成[EMIM]3[Ru(DCA)6]离子液体, 将蚕丝溶解于[EMIM]3[Ru(DCA)6]后经高温碳化得到钌-生物质碳纳米材料。结果显示, 钌-生物质碳纳米材料具有优异的分散性, 平均直径为7.5 nm的钌纳米粒子可均匀地分散在碳片表面, 表现出较强的类氧化酶活性。基于杀虫剂毒死蜱对钌-生物质碳酶活性的抑制作用, 建立了一种测定毒死蜱的比色方法。钌-生物质碳酶能催化3,3′,5,5′-四甲基联苯胺氧化生成蓝色产物。毒死蜱能抑制钌-生物质碳人工酶的活性, 从而导致蓝色产物的吸光度下降。当毒死蜱浓度在10~80 ng/mL之间, 反应体系的吸光度随毒死蜱浓度增大而线性下降, 检出下限为6.5 ng/mL。本方法的灵敏度和稳定性明显优于现有技术, 已成功应用于桃果实中毒死蜱农药残留的快速测定。  相似文献   

12.
开发高效廉价的催化剂对于清洁能源经济至关重要, 将氨硼烷的催化水解用于氢能源开发前景广阔。本工作首先采用简单回流法制备BiVO4纳米片, 再通过浸渍还原法制备出Ru/Fe不同摩尔比的RuFe@BiVO4催化剂, 并在室温下用于催化氨硼烷水解产氢。通过比较载体BiVO4、Ru@BiVO4、Fe@BiVO4、RuFe@BiVO4以及无载体的RuFe纳米粒子的催化产氢速率发现, 在所有的催化剂中, Ru1Fe0.1@BiVO4具有最高的催化活性, 非贵金属Fe能显著增强Ru的催化性能, 这与RuFe之间强的电子效应以及RuFe纳米粒子与载体BiVO4间的双功能效应密切相关, 其活化能(Ea)为43.7 kJ·mol-1, 转化频率(TOF)为205.4 molH2·molRu·min-1。  相似文献   

13.
炭黑是一种廉价且具有高导电性的氧还原催化剂, 可应用于微生物燃料电池(MFCs)的阴极。然而, 纯炭黑的催化性能较差, 不能满足实际应用需求。为了提高炭黑的催化性能, 以氯化铁(FeCl3)和三聚氰胺作为Fe源和N源按一定比例与炭黑混合共炭化, 对炭黑进行改性处理。结果表明, 当Fe-N与炭黑的质量比例为2.6∶1时, MFCs的输出功率密度达到最高值, 为1395 mW/m2, 比Pt/C催化剂(876 mW/m2)提高了59%。SEM观察到炭黑基体上形成了椭圆形或柱状晶体, XRD和XPS测试结果显示是在共炭化过程中生成的Fe3C晶体, 引入了吡啶氮和石墨氮, 在催化剂表面形成更多的活性位点, 这是复合催化剂性能提升的关键因素。随着Fe-N比例的提高, 复合催化剂的导电性和比表面积逐渐下降, 从另一方面又限制了其性能的提升。综上所述, 氯化铁、三聚氰胺和炭黑共炭化制备的复合催化剂是一种具有良好性价比的MFCs阴极催化剂, 可在规模化应用中发挥更大作用。  相似文献   

14.
Characteristics and catalytic properties of a series of carbon-based catalysts (CBCs) produced from paper mill sludge were evaluated. The major processes involved in the production of the catalysts were chemical activation, impregnation, pyrolysis, and post pyrolysis rinsing. The porous structure, catalytic activity and thermostability of the catalysts were tailored during the production stage by introducing hetero-atoms (zinc chloride, and ferric nitrate) in the carbon structure. Characterization of the produced CBCs included determination of the surface area, pore size, and pore size distribution (PSD) from standard N2-adsorption isotherm data. The extent of graphitization and the presence of metal crystals were identified from X-ray diffraction (XRD). The limit of the catalyst gasification was estimated from thermogravimetric analysis (TGA) conducted in an oxidized environment. The NOx reduction capability of the produced catalysts was evaluated in the presence of carbon monoxide using a fixed bed reactor. The reaction temperature ranged from 300 to 500°C. It was shown that paper mill sludge is an excellent precursor for the production of CBCs with NOx removal capability of 66–94%. The catalytic capability of the produced CBCs varied according to the method of production, catalyst surface properties (surface area, pore structure, PSD), metal composition and reaction temperature. The highest NOx removal capacity was observed for the catalytic reactions carried out at 400°C. The mesoporous catalyst produced with a Zn:Fe molar ratio of 1:0.5 exhibited the maximum NOx removal catalytic activity of 94%.  相似文献   

15.
以Ni(NO32·6H2O为催化剂前躯体,原位催化裂解酚醛树脂制备了碳洋葱、竹节碳和碳纳米管等低维碳纳米结构;用粉体X-射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)等手段对低维碳纳米结构进行了表征。结果表明;当Ni(NO32·6H2O与苯酚物质量比小于0.01时,Ni催化剂易分散,碳纳米管易生成,管径均一、分布稠密;当Ni(NO32·6H2O与苯酚物质量比大于0.04时,Ni催化剂易团聚,碳纳米管管径分布较宽,分布稀疏;当Ni(NO32·6H2O与苯酚物质量比为0.10时,Ni催化剂团聚现象严重,难以生成碳纳米管;提出了碳洋葱、竹节碳和碳纳米管不同碳纳米结构可能的形成机理。  相似文献   

16.
等离子体与催化材料协同作用CO2甲烷化反应为CO2再利用提供了可能,但催化材料的制备方法对其结构和性能有重要影响。本研究以等体积浸渍法制备的Ru/γ-Al2O3为催化材料前驱体,分别采取H2大气压冷等离子体还原和H2热还原方法制备Ru/γ-Al2O3-P和Ru/γ-Al2O3-T催化材料。考察两种方法制备Ru/γ-Al2O3催化材料与大气压冷等离子体共同作用下CO2甲烷化反应中的催化活性,并采用不同测试方法研究制备方法对Ru/γ-Al2O3结构的影响,分析影响Ru/γ-Al2O3催化活性的结构因素,进而探究了Ru/γ-Al2O3-P和Ru/γ-Al2O3-T催化材料的制备机理。研究结果表明:载体γ-Al2O3与大气压等离子体共同作用下CO2转化率为24.8%,主要产物是CO;Ru/γ-Al2O3与大气压等离子体共同作用下的主要产物是甲烷。Ru/γ-Al2O3-T和Ru/γ-Al2O3-P催化材料的CO2转化率分别为66.9%和77.3%。Ru/γ-Al2O3-P较高的催化活性源于其表面Ru还原程度高、Ru/Al原子比高以及Ru单质在载体γ-Al2O3上分散性较好且粒径较小,说明采用大气压H2冷等离子体技术可制备高活性的负载型金属催化材料。  相似文献   

17.
以水热晶化法合成了锡掺杂的介孔分子筛, 并采用XRD、N2吸附-脱附、TEM、锥形量热等测试手段对其介观结构和物化性质进行了表征, 同时研究了该分子筛与聚磷酸铵(APP)复合在木材燃烧过程中的阻燃性能和烟气转化作用。结果表明, 该分子筛具有二维六方(P6mm)介观结构、高的比表面积, 与APP复合使用能有效降低杨木的热释放速率(HRR)、总热释放量(THR)、烟生成速率(SPR)和总烟释放量(TSP), 可促进炭的生成, 表现出优异的阻燃与抑烟特性。同时, 该分子筛对阻燃过程中释放的烟气具有转化作用, 能够有效地降低CO的浓度, 具有减毒作用。  相似文献   

18.
以五氯化钽(TaCl5)、乙酸钠为原料,三聚氰胺为N源,十六烷基三甲基溴化铵(CTAB)和聚乙烯吡咯烷酮(PVP)为表面活性剂,通过溶胶-凝胶法制备了N掺杂C包覆NaTaO3复合材料。采用XRD、TEM、XPS、UV-Vis DRS等对样品进行表征,以罗丹明B(RhB)溶液为目标降解物,测试了不同N比例掺杂的复合材料的吸附性能和光催化性能。结果表明,加入的CTAB和PVP经过N2保护的热处理后在NaTaO3周围形成超薄的碳膜,不仅限制NaTaO3粒径增长,而且提高复合材料对目标污染物的吸附性。N掺杂C包覆NaTaO3复合材料具备良好的可见光催化活性,其中三聚氰胺与TaCl5的摩尔比n为1.5时,制备的N掺杂C包覆NaTaO3复合材料可见光催化效率最高,暗中吸附80 min、可见光照8 h时,RhB的去除率为96.46%,其光催化反应过程符合准一级反应动力学规律。   相似文献   

19.
In this work, the Ag loaded Ce-based catalyst was synthesized (by the sol−gel method) and its performance was studied by TG, H2-TPR, XRD, SEM, TEM, BET and XPS. The results show that Ag nanoparticles be successfully loaded onto the CeO2 surface and the relative content of Ag nanoparticles is about 10.22 wt.% close to the theoretical value (10%). XPS shows that Ag nanoparticles induce a great number of oxygen vacancies in the CeO2 lattice through the electronic transfer, and H2-TPR indicates that the Ag-assisted CeO2 catalyst exhibits a better reduction performance and Ag nanoparticles can promote O transform into O2−. The catalytic activity for soot oxidation was studied by TG under air atmosphere and the activity was found to be obviously enhanced when Ag nanoparticles be load on the surface of CeO2 (T10 = 386 °C, T90 = 472.5 °C, Tm = 431 °C). The reaction mechanism was also presented and O2 species is regarded as the determinant factor for the catalytic activity.  相似文献   

20.
We propose a new approach to fabrication of hydrogenated amorphous silicon carbide (a-Si1−xCx:H) thin films for solar cells by the catalytic chemical vapor deposition (Cat-CVD) method using a carbon catalyzer, which is more stable than tungsten or tantalum. It was found that by using the carbon catalyzer, undoped and boron-doped a-Si1−xCx:H films were easily obtained from a SiH4, CH4 and B2H6 mixture without any change in the catalyzer surface, even after deposition for longer than 30 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号