首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
为定量化评估不同地区对肇庆市污染物输送影响,分析了2014—2018年肇庆市ρ(PM2.5)和ρ(O3-8 h)(O3-8 h为O3日最大8 h滑动平均值)的变化特征,并基于HYSPLIT模式计算不同季节后向气流轨迹,通过聚类分析、潜在源贡献因子和浓度权重轨迹方法对肇庆市外来污染物的输送路径和潜在源区进行分析.结果表明:①2014—2018年肇庆市ρ(PM2.5)年均下降3.3 μg/m3,2016年开始ρ(PM2.5)最大值逐年增大.ρ(PM2.5)日变化呈双峰型,峰值分别出现在上、下班高峰期后.2016年起ρ(O3-8 h)年均增加4.4 μg/m3,成为肇庆市首要空气污染物.ρ(O3)日变化呈单峰型,于15:00—16:00达到峰值.②PM2.5和O3污染分别在冬季和秋季较严重,超标日分别达20.6和15.0 d.ρ(PM2.5)与风速相关性最高,ρ(O3-8 h)与日照时数和相对湿度相关系数均较高.③春、夏两季影响肇庆市的气流近80%来自南部海面和东北方向,秋、冬两季85%以上气流源自偏东和偏北方向,肇庆市PM2.5和O3污染除受本地排放影响外,还有来自珠三角、广东省北部及其东部沿海、江西省等地区的输送贡献.研究表明,肇庆市PM2.5和O3污染均较严重,区域联防联控需重点关注广东省中东部城市的外来输送影响.   相似文献   

2.
为了解石家庄市主城区O3(臭氧)污染特征及其影响因子,基于2015-2018年石家庄市空气质量连续监测资料和同期气象数据分析了主城区O3污染总体特征及气象成因.结果表明:①石家庄市主城区大气光化学污染日益严峻,ρ(O3)日均值由2015年的47 μg/m3增至2018年的66 μg/m3,ρ(O3)超过GB 3095-2012《环境空气质量标准》二级标准限值的天数由2015年的20 d增至2018年的70 d.②ρ(O3)存在明显的季节性差异,呈夏季[(89±33)μg/m3] >春季[(69±25)μg/m3] >秋季[(40±26)μg/m3] >冬季[(28±16)μg/m3]的特征;ρ(O3)日变化呈单峰型分布,谷值出现在06:00-07:00,峰值出现在15:00-16:00,且15:00-17:00是ρ(O3)超标的高发时段.③ρ(O3)与气温呈指数关系,当气温为20~25、25~30、≥ 30℃时,ρ(O3)日均值分别为75、90及119 μg/m3.ρ(O3)在相对湿度为60%时存在拐点,当相对湿度≤ 60%时,ρ(O3)随相对湿度的增大而上升;当相对湿度>60%时,ρ(O3)随相对湿度的增大而下降.风速与ρ(O3)呈分段线性关系,当风速 < 2 m/s时,ρ(O3)随风速的增加而上升;当风速≥ 2 m/s时,ρ(O3)随风速的增加而下降.④影响石家庄市主城区ρ(O3)升高的污染源主要位于其东-东南-南方位,其次为东北-东方位,而西部和北部地区则较少.⑤石家庄市主城区ρ(O3)超标多发生在气温>20℃,相对湿度介于40%~70%之间,风速在1.5~3.0 m/s之间的气象背景下,经统计,当气象条件同时符合上述三项气象要素时,ρ(O3)超标天数占3-10月总超标天数的66.5%.研究显示,气温>20℃、相对湿度为40%~70%、风速为1.5~3.0 m/s的气象条件可初步作为石家庄市主城区O3污染的预警指标.   相似文献   

3.
为了解我国不同气候背景城市O3污染及其与前体物的关系,选取北京市、沈阳市、银川市、成都市、南京市和广州市作为典型代表城市,基于这6个城市2014-2016年ρ(O3)、ρ(NO2)和ρ(CO)资料对O3与其前体物质量浓度变化特征及二者相关性进行研究.结果表明:①2014-2016年6个城市ρ(O3)年均值大小顺序依次为南京市>沈阳市>北京市>银川市>成都市>广州市,ρ(NO2)年均值大小顺序依次为北京市>成都市>南京市>沈阳市>广州市>银川市,ρ(CO)年均值大小顺序依次为北京市>银川市>成都市>沈阳市>南京市>广州市.2014-2016年除广州市ρ(O3)下降、沈阳市变化不明显外,其他城市ρ(O3)总体呈上升趋势;各城市ρ(NO2)和ρ(CO)普遍呈下降趋势.②广州市ρ(O3)夏季最高、春季最低,其他城市四季ρ(O3)大小顺序依次为夏季>春季>秋季>冬季;北京市、沈阳市和银川市四季ρ(NO2)和ρ(CO)大小顺序依次为冬季>秋季>春季>夏季,成都市、广州市和南京市为冬季>春季>秋季>夏季.各城市ρ(O3)和ρ(Ox)日变化呈单峰型,ρ(NO2)和ρ(CO)日变化呈双峰型.③6个城市城区ρ(O3)均低于清洁对照点,城区ρ(NO2)和ρ(CO)均高于清洁对照点,并且城区与清洁对照点O3及其前体物质量浓度差值随城市和月份变化存在一定的差异.④各城市ρ(O3)与ρ(NO2)和ρ(CO)均呈负相关,与ρ(Ox)呈显著正相关;城区ρ(O3)与ρ(NO2)和ρ(CO)的相关性均好于清洁对照点,清洁对照点ρ(O3)与ρ(Ox)的相关性则好于城区.⑤各城市ρ(O3)超标率随ρ(NO2)和ρ(CO)的增加均呈先迅速上升再快速减小,之后缓慢变化的特征,但ρ(O3)超标率峰值对应的ρ(NO2)和ρ(CO)有所差异.研究显示,日照条件较好的银川市、北京市和沈阳市O3与其前体物相关性较成都市、南京市和广州市强.   相似文献   

4.
陕甘宁地区城市空气质量特征及影响因素分析   总被引:1,自引:0,他引:1       下载免费PDF全文
刘昕  辛存林 《环境科学研究》2019,32(12):2065-2074
利用历史观测数据来探究短时间内AQI(空气质量指数)的起伏变化,有助于制定空气污染防治措施,对区域环境经济的协调发展具有重要意义.为研究陕西省、甘肃省和宁夏回族自治区(简称"陕甘宁地区")2015-2017年空气质量特征,对3 a的AQI及评价体系中6项污染物(PM2.5、PM10、O3、NO2、SO2、CO)质量浓度特征进行研究.通过数理统计对29个监测站点32 910个样本数据进行整理,采用克里金法分析AQI及6项污染物质量浓度的时空变化特征.结果表明:①空间上,陕甘宁地区西南部污染较轻,陕西省中部关中平原、宁夏回族自治区北部及甘肃省河西走廊西北部污染较严重.ρ(O3)高值集中分布在研究区西北部地区,ρ(CO)、ρ(NO2)高值集中分布在东部地区,ρ(PM2.5)、ρ(PM10)分布特征与AQI分布特征相似,ρ(SO2)高值集中分布在北部地区.②时间上,3 a的AQI平均值为88,AQI季节性变化呈冬季(108)>春季(88)>秋季(78)>夏季(74)的规律.③通过数理统计对污染物质量浓度月变化特征分析发现,ρ(O3)夏季最高,峰值为140.3 μg/m3,春秋次之,冬季最低;ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)均为冬季最高,其最高值分别为83.7 μg/m3、155.9 μg/m3、72.6 μg/m3、52.1 μg/m3、2.04 mg/m3.④相关性分析表明,AQI与自然因素中的平均气温、平均降水量和气压的相关系数分别为-0.859、-0.903和0.620,平均气温、平均降水量与AQI均呈极显著负相关(P < 0.01),气压与AQI呈显著正相关(P < 0.05).DEM(数字高程模型)地形起伏度分析发现,地形起伏度级别越大,AQI越小.社会经济因素中,AQI受工业企业数的影响最大,相关系数为0.634.研究显示,自然因素对陕甘宁地区空气质量的影响大于社会经济因素的影响,气象条件对空气污染的扩散起重要作用.   相似文献   

5.
为研究济南市机动车排气对城市区域空气质量的影响,利用环境空气质量监测站点(简称"1号站点")和路边机动车尾气监测站点(简称"2号站点")的在线数据,以及基于4种模拟情景的CMAQ空气质量模型预测数据,研究了济南市城市区域大气污染物质量浓度变化规律及不同机动车车型对6种常规大气污染物的贡献.结果表明:①在采暖季,1号站点ρ(PM2.5)、ρ(PM10)、ρ(NO2)、ρ(CO)、ρ(O3)和ρ(SO2)月均值分别为435 μg/m3、702 μg/m3、84.2 μg/m3、6.8 mg/m3、4.5 μg/m3和92 μg/m3.②2015年12月24日(灰霾天),1号站点ρ(CO)、ρ(PM2.5)和ρ(PM10)均明显升高,ρ(SO2)、ρ(O3)和ρ(NO2)均变化不明显.2个监测站点中ρ(NO2)和ρ(PM10)均呈双峰趋势,2个峰值出现的时间与上、下班高峰期基本一致.除ρ(O3)和ρ(SO2)达GB 3095-2012《环境空气质量标准》二级标准外,其他污染物均超过GB 3095-2012二级标准限值,采暖季大气污染特征为颗粒物型污染.③机动车对研究区域NO2和PM10贡献率较大,其中,小型车对CO、NO2、PM10和PM2.5贡献率最大,其贡献率分别为85.7%、50.1%、53.4%和52.8%.机动车排放源能降低空气中ρ(O3),其总贡献率为-25.5%,其中大型车、中型车、小型车对O3的贡献率分别为-8.8%、-2.7%和-8.9%.灰霾天下不同机动车车型对空气中污染物质量浓度的总贡献率均比采暖季大.研究显示,济南市采暖季大气污染特征为颗粒物型污染,机动车排放源对空气中NO2和PM2.5有较大贡献.   相似文献   

6.
福建省沿海地区春季一次近地层O3超标成因分析   总被引:1,自引:0,他引:1       下载免费PDF全文
福建省沿海地区春季ρ(O3)较高且超标天数较多,为研究春季ρ(O3)超标的天气学成因,选取2017年4月26日-5月1日O3污染过程,利用统计对比和聚类分析方法,将全过程分成污染前、污染维持和污染后3个阶段,再将污染维持阶段分为4个区,利用ρ(O3)和ρ(PM2.5)小时均值资料,结合天气形势和气象要素场变化,分析此次O3污染的主要特点.结果表明:①此次O3污染与天气形势关系密切,在冷高压(4月28-29日)控制下,光化学反应条件有利,太阳辐射强、日照时间超过11 h,08:00起ρ(O3)上升速率为15~20 μg/(m3·h),ρ(O3)最大8 h滑动平均值[简称"ρ(O3)-max-8 h"]超过GB 3095-2012《环境空气质量标准》二级标准限值,但大气扩散条件好,ρ(PM2.5)日均值未超过一级标准限值,ρ(O3)超标原因为光化学反应所致,并且ρ(O3)分布有明显的日变化规律.②在锋前暖区(4月26日08:00-16:00)及变性冷高压(4月30日-5月1日)控制下,光化学反应剧烈,08:00起ρ(O3)上升速率为25~35 μg/(m3·h),天气静稳且大气扩散条件差,本地生成的O3在近地层累积效应明显,4月30日ρ(O3)小时均值和ρ(O3)-max-8 h达到过程峰值,ρ(PM2.5)日均值超过GB 3095-2012二级标准限值,ρ(O3)-max-8 h超过三级标准限值,空气质量达中度污染,ρ(O3)超标原因为光化学反应加本地累积所致,并且ρ(O3)分布也有明显的日变化规律.③受强冷空气影响,4月26日20:00-24:00福建省沿海地区的6个城市ρ(O3)不降反升,22:00-24:00 ρ(O3)8 h滑动平均值陆续达到一天中的最高值;4月27日ρ(O3)维持在70~140 μg/m3之间,ρ(O3)分布没有明显的日变化规律.研究显示,导致福建省沿海地区春季O3污染天气的成因是多种因素共同作用的结果.   相似文献   

7.
西宁市PM2.5水溶性无机离子特征及其来源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
为探讨西宁市PM2.5水溶性无机离子的特征及其来源,于2017年1月-2018年4月在西宁市开展PM2.5样品采集工作,使用离子色谱仪分析水溶性无机离子.结果表明:西宁市大气中ρ(PM2.5)平均值为(42.7±36.6)μg/m3,4个采样点ρ(PM2.5)大小顺序依次为市区(54.9 μg/m3)>工业区(44.1 μg/m3)>郊区(40.8 μg/m3)>农村(28.3 μg/m3);ρ(PM2.5)季节性分布特征明显,呈冬季最高、夏季最低的特征.SNA(为SO42-、NO3-和NH4+的统称)是最主要的水溶性离子,占总水溶性离子的66.3%,SNA季节性分布特征为冬季最高、夏季最低.4个采样点SOR(硫氧化率)和NOR(氮氧化率)平均值均大于0.10,说明SO42-和NO3-主要来源于二次转化.采样期间PM2.5中ρ(NO3-)/ρ(SO42-)为0.72,表明燃煤源排放大于交通源排放.主成分分析显示,西宁市PM2.5水溶性离子来源主要为二次粒子源、工业源、扬尘源和燃烧源.研究显示,西宁市城区、工业区、郊区大气中ρ(PM2.5)平均值均超过GB 3095-2012《环境空气质量标准》一级标准限值,建议减少PM2.5的产生应以控制二次粒子源、工业源、燃烧源和扬尘源为主.   相似文献   

8.
城市主要大气污染物时空分布特征及其相关性   总被引:1,自引:0,他引:1       下载免费PDF全文
为制订合理的大气污染物减排措施,利用中国环境监测总站公布的2015年1-12月299座城市实时发布的环境空气颗粒物(PM2.5和PM10)及气态污染物(CO、NO2和SO2)的质量浓度数据,对其进行了时空分布特征及其相关性研究.结果表明:① 2015年城市环境空气颗粒物污染严重,299座城市的ρ(PM2.5)、ρ(PM10)年均值分别主要集中在25~60和40~110 μg/m3,年均值达到GB 3095-2012《环境空气质量标准》二级标准的城市所占比例分别仅为24%和38%.② 城市大气污染物浓度具有明显的季节性特征,基本呈冬季>春秋季>夏季的趋势,其中冬季ρ(PM2.5)、ρ(PM10)、ρ(CO)、ρ(NO2)、ρ(SO2)分别为(73±27)(114±42)(1.49±0.61)(36±14)(42±33)μg/m3.③ 高ρ(PM2.5)和ρ(PM10)主要集中在华北平原,年均值分别为(70±16)(117±22)μg/m3;高ρ(CO)主要出现在山西省,年均值为(1.76±0.48)mg/m3;高ρ(NO2)主要分布在京津冀、山东省和长江三角洲,年均值分别为(42±6)(39±9)(34±8)μg/m3;高ρ(SO2)主要分布在山西、山东两省,年均值分别为(54±10)(41±16)μg/m3.④ Pearson相关系数研究表明,我国城市环境空气颗粒物与气态污染物具有较强的复合性,并且具有秋冬季明显强于春夏季的季节性特征.研究显示,我国城市大气污染具有较强的季节性、区域性与复合性,在降低环境空气颗粒物浓度的同时,对气态污染物的削减也不容忽视.   相似文献   

9.
利用2015~2021年云南省5个边境城市6种常规大气污染物的质量浓度数据,探究其污染特征、时空变化及空间异质性。结果表明,研究区域污染物年际浓度变化起伏较大,PM10、PM2.5年均浓度分别为(42.6±8.2),(25.4±4.2)µg/m3,均低于中国《环境空气质量标准》(GB 3095-2012)二级浓度限值。PM、NO2和O3-8h月均浓度呈U型变化趋势,其中3月份浓度最高。5个城市PM和NO2浓度季节变化均表现为:春季>冬季>秋季>夏季,O3-8h表现为:春季>夏季>秋季>冬季,而CO冬季污染程度最小,SO2无明显的季节变化规律。根据Sen-MK的逐日浓度趋势分析,污染物总体呈现下降趋势,其中PM10下降速率最高达11×10-3µg/(m3×d),而O3-8h呈现上升趋势。变异系数(COD)表明,污染物的空间分布极不均匀,特别是SO2的COD均大于0.2,春季O3-8h空间分布更加均匀。Person相关分析表明,PM与NO2、CO、O3-8h表现出较强的相关性,且西双版纳(BN)PM与其他大气污染物相关性较其他城市强。  相似文献   

10.
春季是长三角地区对流层O3污染的高峰期之一,高浓度的O3暴露会影响冬小麦生长导致减产.利用长三角地区各城市2014年春季逐时ρ(O3)观测数据,研究了长三角地区春季O3污染特征,并结合O3暴露指数(M7指数和AOT40指数)和剂量-响应关系模型,详细评估了长三角地区O3污染对冬小麦产量的影响.结果表明:长三角地区春季ρ(O3)空间上总体呈南低北高的分布,长三角地区北部江苏和上海的ρ(O3)明显高于南部的浙江地区,在浙江北部、江苏和上海等地区,整个春季日最大8 h ρ(O3)平均值超过107 μg/m3,最高值出现在5月,超过128 μg/m3;一半以上的城市ρ(O3)超标[超过GB 3095-2012《环境空气质量标准》中8 h滑动平均ρ(O3)的二级标准限值(160 μg/m3)]日数在10 d以上,其中南京和扬州超标日数最多,分别为27和20 d;相应地,O3暴露指数也呈南低北高的分布,其中苏北地区O3暴露指数最高,导致长三角地区平均冬小麦相对损失达5.7%(M7)~25.5%(AOT40),造成的产量损失为7.85×105 t(M7)~4.49×106 t(AOT40),其中,苏北地区为5.8%(M7)~25.9%(AOT40),造成的产量损失为6.77×105 t(M7)~3.86×106 t(AOT40),占长三角地区冬小麦产量损失的86%以上.研究显示,当前长三角地区O3污染及其对冬小麦产量的影响已相当严重,特别是对苏北地区,而苏北地区是我国重要的冬小麦产地之一,因此,应当科学有效地治理O3污染以缓解粮食安全问题.   相似文献   

11.
基于山西省2018—2020年国控点位O3监测数据分析了全省O3污染特征,分别以晋城市和太原市为典型城市,分析了温度、相对湿度和风向风速等气象因子以及前体物(NOx和VOCs)对O3的影响,并采用CAMx模式开展2020年6—8月山西省O3区域和行业来源解析. 结果表明:① 山西省O3超标天数中以O3轻度污染为主,且中度及以上污染呈增加趋势,O3污染集中出现在5—9月,且呈现较强的地域性特征,O3浓度日变化呈单峰型特征. ② ρ(O3-1 h)(臭氧1 h平均浓度)与气温、风速均呈正相关,与相对湿度呈负相关,高温、低湿有利于O3的生成. 风速与ρ(O3-1 h)呈分段式线性关系,ρ(O3-1 h)随着风速增大而升高,当风速大于某一阈值时,ρ(O3-1 h)随风速的增加而下降. 以典型城市晋城市为例,当温度在25 ℃以上、相对湿度在30%~60%之间、风速为4~5 m/s,且风向为南风和东南风时更容易出现ρ(O3-1 h)高值. ③ 山西省2020年6—8月O3区域来源解析表明,各城市O3本地源贡献较弱而传输贡献影响显著(>80%). ④ 山西省2020年6—8月O3行业来源解析表明,各市工业源类(电力源、焦化源和其他工业源)的贡献率在50%左右,柴油交通源贡献率在20%~27%之间. 研究显示,山西省O3污染传输贡献影响显著,联防联控势在必行,电力源、焦化源和柴油交通源对O3生成贡献较大,亟需优先加强管控.   相似文献   

12.
为提高西安市ρ(PM2.5)及ρ(O3)预报准确率,更好地服务西安市预报预警工作,以CAMx模式预报结果为基础,结合中尺度WRF气象预报数据、ρ(PM2.5)及ρ(O3)观测数据,基于多元线性回归、岭回归、lasso回归、决策树、随机森林以及支持向量机6种机器学习优化模型,对西安市2019年PM2.5及O3模拟结果进行优化.结果表明:①CAMx模式对污染物的预报存在偏差,优化模型明显修正了CAMx模式的系统性偏差,提高了预报精度.②ρ(PM2.5)及ρ(O3)的均方根误差(RMSE)由174.00、37.11 μg/m3分别降至34.36~39.37、24.77~28.82 μg/m3,相关性系数(R)由0.63、0.78分别提至0.70~0.78、0.83~0.88.③不同模型对模拟值的订正优势不同,随机森林对PM2.5优化效果显著,优化提高率为80%;支持向量机对O3的优化效果最理想,优化提高率为36%;线性回归方法对O3的优化效果较好,但对PM2.5的优化效果相对较差.研究显示,机器学习模型显著优化了CAMx模拟结果,反映了利用机器学习修正空气质量数值模式预报结果的研究意义和可行性.   相似文献   

13.
为研究新型冠状病毒肺炎(COVID-19)疫情防控政策实施对上海市大气污染物质量浓度的影响,利用上海市内环某高层顶楼微环境平台观测了政策实施前10 d(2020-01-14—23)和实施后20 d(2020-01-24—02-12)的PM2.5和PM10质量浓度及气象要素(温度、相对湿度、风向、风速、大气压及降雨),结合2019年同期观测数据和杨浦四漂空气质量监测点的气态污染物逐时数据,采用描述性统计、合成分析、拉格朗日粒子扩散模式和Spearman相关系数方法,分析了政策实施前、后大气污染物特征及其影响因素。结果表明:1)污染物浓度变化方面。政策实施后,ρ(PM2.5)和ρ(PM10)和ρ(NO2)均明显降低,ρ(PM2.5)和ρ(PM10)分别由61.4,102.4 μg/m3降至38.1,63.5 μg/m3,降幅均为38.0%,ρ(NO2)由57.3 μg/m3降至27.0 μg/m3,降幅达到52.9%,而ρ(O3)由47.6 μg/m3增至69.5 μg/m3。ρ(PM2.5)和ρ(PM10)日变化特征由实施前的双峰双谷型变为单谷型。2)气象因素影响方面。上海地区南风异常减弱了冬季风强度,对流层中层正距平异常抑制了对流活动的发展,易导致大气污染物在近地面的汇聚。ρ(PM2.5)和ρ(PM10)与相对湿度呈负相关,风速对ρ(PM2.5)和ρ(PM10)的影响与风向有关。3)外源输入影响方面。长三角城市群及山东省、河南省等周边区域对上海市ρ(PM2.5)和ρ(PM10)贡献显著。  相似文献   

14.
气象因子对近地面臭氧(O3)浓度有重要影响.为探究O3与气象因子的关联特征以及O3的周期性特征,利用反距离权重插值、Kolmogorov-Zurbenko滤波和多元线性回归分析了2013—2018年我国O3和气象因子数据.结果表明:①2013—2018年中国O3日最大8 h滑动平均值〔ρ(O3-max-8 h)〕第90百分位数呈上升趋势,增速为2.6 μg/(m3·a);ρ(O3-max-8 h)高值区(≥180 μg/m3)主要分布在华北平原和长江中下游平原一带,高值区范围在华北平原地区呈扩大趋势,在长三角和珠三角地区呈缩小趋势.②ρ(O3-max-8 h)短期和季节分量的贡献在空间上呈“互补”的分布特征.短期分量的贡献(75%)在东南沿海地区最高,在内陆大部区域较低(< 30%);季节分量的贡献(15%)在东南沿海地区最低,在内陆大部区域较高(>60%).③在华北平原至长三角地区一带,长期气象因子变化是ρ(O3-max-8 h)升高的重要原因;而在华南、西南和东北区域,气象因子变化对ρ(O3-max-8 h)的影响并不显著.④ρ(O3-max-8 h)与温度、太阳总辐射量的相关性(r>0.86)均在四川盆地至湖北省一带最高,ρ(O3-max-8 h)与相对湿度在中部和西部区域呈正相关(r>0.64),ρ(O3-max-8 h)与风速在华北平原呈强正相关(r>0.89).研究显示,中国近地面O3具有显著的时空分布特征,气象因子与太阳总辐射量对O3空间分布的影响具有较大的区域差异.   相似文献   

15.
保定市大气污染特征和潜在输送源分析   总被引:1,自引:0,他引:1       下载免费PDF全文
保定市是京津冀地区重要城市之一.为了解保定市大气污染物质量浓度特征和潜在输送源,对保定市国控点2017年1月1日-12月31日PM10、PM2.5、SO2、NO2、O3、CO等常规大气污染物数据进行分析,并利用TrajStat后向轨迹模型进行区域传输研究.结果表明:①ρ(PM10)、ρ(PM2.5)、ρ(SO2)、ρ(NO2)分别为(138±96)(84±66)(29±23)和(50±24)μg/m3,与2016年相比分别下降5.9%、9.1%、25.5%和13.1%;ρ(CO)较2016年下降了14.0%;ρ(O3)较2016年增长了25.2%.ρ(PM10)、ρ(PM2.5)、ρ(NO2)和ρ(O3)分别超过GB 3095-2012《环境空气质量标准》二级标准限值的0.97、1.40、0.25和0.34倍,ρ(SO2)和ρ(CO)未超标.②除ρ(O3)外,其他污染物质量浓度均呈冬季最高、夏季最低的季节性特征,其中,冬季PM2.5污染最为严重,春季PM2.5~10(粗颗粒物)污染严重.③空气质量模型源解析结果显示,保定市ρ(PM2.5)约60.0%~70.0%来自本地污染源排放.后向轨迹结果表明,在外来区域传输影响中,保定市主要受到西北方向气团(占比为21.7%~60.0%)远距离传输和正南方向气团(占比为34.8%~50.5%)近距离传输的影响.④PSCF(潜在源贡献因子分析法)和CWT(浓度权重轨迹分析法)分析表明,除保定市及周边区县本地污染贡献外,位于太行山东麓沿线西南传输通道的邯郸市、邢台市、石家庄市是影响保定市PM2.5的主要潜在源区.研究显示,PM2.5为保定市大气中的主要污染物,并呈冬季高、夏季低的变化特征,其主要来自西北远距离输送和南部近距离传输.   相似文献   

16.
杭州湾北岸上海段石化集中区臭氧重污染过程研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究杭州湾O3污染的形成机制,采用在线监测系统对杭州湾北岸上海段石化集中区O3及其前体物开展了为期1个月(2019年5月)的同步连续观测.采用OZIPR(臭氧等值线研究)模型分析O3生成的敏感性.在O3重度污染期间,利用PMF(正定矩阵因子分解)模型对O3前体物——VOCs进行源解析,采用臭氧生成潜势及气团老化分别估算了VOCs的反应活性和化学消耗.结果表明:①2019年5月杭州湾北岸上海段石化集中区O3的IAQI(空气质量分指数)优良率仅为61.3%,ρ(O3)第90%分位值为173.0 μg/m3.5月22日、23日发生重度O3污染,O3日最大8 h滑动平均值分别为(284.4±19.2)(282.0±14.2)μg/m3,分别超过GB 3095—2012《环境空气质量标准》二级标准限值(160 μg/m3)的77.75%和76.25%.②O3的生成受VOCs控制,降低VOCs的排放可在一定程度上降低O3的生成,降低NOx的排放反而会促进O3的生成.③O3重度污染期间,VOCs主要来自化工区排放(72.35%)和机动车尾气排放(27.65%).④O3重度污染期间,烯烃、炔烃及芳香烃对O3生成的贡献率之和在80.00%以上,其中丙烯、乙烯和甲苯的贡献率分别为29.97%、15.60%和14.16%;芳香烃及烯烃和炔烃是最主要的VOCs化学消耗物种,其中φ(丙烯)、φ(乙烯)和φ(1,2,4-三甲苯)的消耗量分别为13.57×10-9、4.93×10-9和3.55×10-9.研究显示,杭州湾北岸上海段5月O3的生成受化工区影响显著,丙烯与乙烯是O3重污染期间关键的O3前体物.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号