首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The objective of this study was to determine the effect of feed delivery frequency on the behavioral patterns and productivity of lactating dairy cows. Twelve freestall-housed, lactating Holstein dairy cows, including 6 primiparous (PP) and 6 multiparous (MP), milked 3×/d (at 1400, 2200, and 0600h), were exposed to each of 3 treatments (over 21-d periods) in a replicated Latin square design. Treatments included feed delivery frequency of (1) 1×/d (at 1400 h), (2) 2×/d (at 1400 and 2200 h), and (3) 3×/d (at 1400, 2200, and 0600 h). Milk production as well as feeding, lying, and rumination behaviors were electronically monitored for each animal for the last 7 d of each treatment period. Milk samples were collected for the last 3 d of each period for milk component analysis. Dry matter intake (DMI) varied with feed delivery frequency, with greatest DMI observed in cows fed 3×/d (27.8 kg/d) compared with those fed 2×/d (27.0 kg/d) or 1×/d (27.4 kg/d). Treatment had no effect on milk yield (41.3 kg/d) or efficiency of production (1.54 kg of milk/kg of DMI). Cows that did not receive delivery of feed following the 2200 h milking (treatment 1) and 0600 h milking (treatments 1 and 2) had lower DMI during the first hour after milking than those that received feed at all milkings (treatment 3). Total feeding time and meal frequency, size, and duration did not vary by treatment, but PP cows consumed smaller meals at a slower rate, resulting in lower DMI compared with MP cows. Primiparous cows consumed 50.1% and 26.1% less dry matter than MP cows during the first meal following the first and second milkings, respectively. Lying time did not vary by treatment, but PP cows spent more time lying (10.3 vs. 8.3 h/d) than MP cows. Under 3×/d milking schedules, greater feed delivery frequency resulted in greater DMI as a function of increased DMI following the return from milking and the delivery of feed.  相似文献   

2.
A comparative study was performed to evaluate differences in milk yield between an automatic milking system (AMS) and a conventional herringbone milking parlor system. Two herds of Italian-Friesian cows were reared in the same barn, located in the Po Valley in northern Italy. Twenty-five primiparous cows and 10 multiparous cows were milked with an AMS, while at the same time 29 primiparous and 9 multiparous were milked twice daily in a milking parlor on the other side of the barn. A selection gate allowed cows to access the AMS only if the interval from last milking was >5 h. Multiparous cows in the AMS yielded more milk than multiparous cows in the milking parlor (34.2 ± 0.7 vs. 29.4 ± 0.6 kg/d). There was no difference in milk yield between primiparous cows in the AMS and in the milking parlor (28.9 ± 0.4 vs. 28.8 ± 0.3 kg/d). Milking frequency in the AMS was significantly higher in primiparous (2.8 ± 0.03) than in multiparous cows (2.5 ± 0.04). The hot season negatively affected milk yield; the milk yield reduction was higher for cows milked with the AMS (−4.5 ± 0.6 kg/d) than in the milking parlor (−3.0 ± 0.8 kg/d). In the AMS, milking frequency decreased during the hot season in primiparous cows (−0.3 ± 0.1). We concluded that a positive AMS effect on milk yield is possible, but that steps must be taken to alleviate the discomfort involved with attracting cows to the AMS.  相似文献   

3.
Milk cortisol concentration was determined under routine management conditions on 4 farms with an auto-tandem milking parlor and 8 farms with 1 of 2 automatic milking systems (AMS). One of the AMS was a partially forced (AMSp) system, and the other was a free cow traffic (AMSf) system. Milk samples were collected for all the cows on a given farm (20 to 54 cows) for at least 1 d. Behavioral observations were made during the milking process for a subset of 16 to 20 cows per farm. Milk cortisol concentration was evaluated by milking system, time of day, behavior during milking, daily milk yield, and somatic cell count using linear mixed-effects models. Milk cortisol did not differ between systems (AMSp: 1.15 ± 0.07; AMSf: 1.02 ± 0.12; auto-tandem parlor: 1.01 ± 0.16 nmol/L). Cortisol concentrations were lower in evening than in morning milkings (1.01 ± 0.12 vs. 1.24 ± 0.13 nmol/L). The daily periodicity of cortisol concentration was characterized by an early morning peak and a late afternoon elevation in AMSp. A bimodal pattern was not evident in AMSf. Finally, milk cortisol decreased by a factor of 0.915 in milking parlors, by 0.998 in AMSp, and increased by a factor of 1.161 in AMSf for each unit of ln(somatic cell count/1,000). We conclude that milking cows in milking parlors or AMS does not result in relevant stress differences as measured by milk cortisol concentrations. The biological relevance of the difference regarding the daily periodicity of milk cortisol concentrations observed between the AMSp and AMSf needs further investigation.  相似文献   

4.
Two groups of dairy cows monitored from 3 to 19 wk postpartum were subjected to 2 different cow traffic routines in an automatic milking system with control gates and an open waiting area. Using different time settings in the control gates, the groups of cows were separated by average milking frequency; cows in the high milking frequency routine had a minimum of 4 h between milkings (MF4) and were milked 3.2 ± 0.1 times daily, whereas cows in the low milking frequency routine had at least 8 h between milkings (MF8) and were milked 2.1 ± 0.1 times daily. Cows in the 2 groups were switched to the opposite milking frequency control for wk 18 and 19. The increased milking frequency resulted in a higher milk yield of about 9% through 16 wk of early lactation Although the higher milk yield was not significant when measured as energy-corrected milk, significant interactions of milking frequency and study period for milk yield and energy-corrected milk yield were consistent with a yield response when cows were milked more frequently. Meal criteria estimated for each individual cow were used to group feeding visits into meals. During MF4, cows fed in fewer meals per day and had longer meals than during MF8. The control gates were used efficiently, with only a few passages not resulting in actual meals. Although the voluntary meal intervals seemed to be short, the average milking frequency was far below that theoretically possible. This was explained by individual differences in milking frequency and long intervals from when a cow was redirected in a control gate until it arrived in the milking unit. A wide individual range in the voluntary interval between the first and the second meal in the milking cycle suggests that fixed time limits for control gates set on group level have no justifiable biological basis. It was also concluded that primiparous cows were well adapted to the automatic milking system after 2 wk in the barn.  相似文献   

5.
The objective of this study was to determine the effect of milking frequency on the behavioral patterns and productivity of lactating dairy cows. Twelve freestall-housed, lactating Holstein dairy cows (7 primiparous and 5 multiparous) were exposed to each of 2 treatments (over 21-d periods) in a replicated crossover design. Treatments were milking frequency of 2×/d (at 0600 and 1800 h) or 3×/d (at 0600, 1400, and 2200 h). Milk production, feeding, lying, and rumination behavior were monitored for each animal for the last 7 d of each treatment period. Milk samples were collected for the last 3 d of each period for milk component analysis. The results indicated that cows milked 3×/d produced 2.9 kg/d more milk than those milked 2×/d. Primiparous cows consumed 3.9 kg/d less dry matter (DM) than did multiparous cows. The extra time (14.6 min/d) required for milking 3×/d altered the distribution of cow behavioral activity throughout the day. Although this did not affect total daily lying or rumination time, we observed a tendency for cows milked 2×/d to spend less time (224.6 vs. 237.5 min/d) feeding and, thus, those cows tended to consume their feed at a faster rate (0.13 vs. 0.12 kg of DM/min) than cows milked 3×/d. For multiparous cows, the increase in feeding activity was facilitated through having longer (40.1 vs. 36.8 min/meal) and numerically larger meals (4.8 vs. 4.6 kg of DM/meal) when milked 3×/d. Alternatively, primiparous cows consumed smaller (2.9 vs. 3.2 kg of DM/meal) and more frequent meals (9.1 vs. 7.7 meals/d) throughout the day when milked 3×/d, resulting in a tendency for greater DM intake (24.7 vs. 23.6 kg/d) compared with primiparous cows milked 2×/d. These results indicate that under 3×/d milking schedules, primiparous cows will positively adjust their feeding behavior to achieve similar production increases as multiparous cows. In summary, milking 3×/d can be used to improve production; however, greater milking frequency elicits varying effects on the behavior of primiparous and multiparous cows, suggesting that grouping and management of cows based on parity may be beneficial.  相似文献   

6.
The objective was to evaluate whether the amount of concentrate offered in an automatic milking systems (AMS) would modify milking frequency, feeding behavior, and milk production. One hundred fifteen lactating cows were used in a cross-over design with 2 periods of 90 d each and 2 treatments: low concentrate (LC; up to 3 kg/d of concentrate at the AMS) or high concentrate (HC; up to 8 kg/d of concentrate at the AMS). Cows were evenly distributed in 2 symmetrical pens, each containing 1 AMS and about 50 cows at any given time. All cows received the same total ration (28% corn silage, 1.67 Mcal of net energy for lactation/kg, 16.5% crude protein, DM basis), but a different amount of concentrate from this ration was offered at the AMS depending on treatment. The concentrate at the AMS had the same composition in both treatments. Cows were fetched when time elapsed, because last milking was greater than 12 h. The amount of concentrate offered at the AMS was proportional to the time elapsed since last visit (125 and 333 g/h for LC and HC, respectively). Milk production, total number of daily milkings, number of cows fetched, or number of voluntary milkings were not affected by treatments. The consumption of basal ration was greater in LC than in HC, but this difference was compensated by a greater consumption of concentrate at the AMS in HC than LC cows. Total dry matter intake tended to be lower, therefore, in HC than in LC cows. Eating rate of the basal ration was greater in LC than in HC, but the total amount of time that cows devoted to eat was similar between treatments. Offering high amounts of concentrate to the AMS feeding a basal ration rich in corn silage did not diminish the need for fetching cows and did not increase the number of daily milkings nor milk production.  相似文献   

7.
Economic viability of automatic milking systems (AMS) within an Australian pasture-based farming system will be largely determined by the throughput (cows milked/h), which is the result of processes occurring while the cow is in the AMS milking crate. Premilking udder preparation is automated and optional on all AMS. Yet, very few conventional farms in Australia conduct premilking teat preparation regimens, with the majority (78%) strategically washing only visibly dirty teats before milking cup attachment. The objective was to determine the impact of udder preparation in an AMS on the total time spent by cows in the AMS milking unit (crate time). An experiment was conducted with 80 lactating Holstein-Friesian cows in a crossover design over two 5-wk periods to determine the effect of premilking teat preparation (no wash vs. wash) on milk yield, milk harvest rates, and total crate time per milking session in an AMS. Within this study there was no significant effect of treatment on quarter milk conductivity (no wash = 4,858 vs. wash = 4,829 ± SE = 17 μS/cm), milk blood concentration (no wash = 115.7 vs. wash = 112.3 ± 7.3 ppm) or test-day somatic cell counts (no wash = 2.044 vs. wash = 2.039 ± 0.025 log10 SCC). There was similar total daily milk yield for the 2 treatments (no wash = 20.5 vs. wash = 20.1 ± 0.2 kg of milk), but a greater mean quarter milk flow rate resulting from the wash treatment (no wash = 0.950 vs. wash = 0.981 ± 0.013 kg of milk/min). The faster milking was not sufficient to counter the time associated with washing, resulting in longer crate time (no wash = 6.02 vs. wash = 7.12 ± 0.08 min/milking session) and therefore, lower harvest rate (no wash = 2.08 vs. wash = 1.74 ± 0.02 kg of milk/min crate time). Not washing teats would allow more efficient AMS utilization by potentially allowing more cows to be milked per machine, which would likely have a positive effect on the economic viability of this technology. The results indicate that a longer term study, investigating the effect of washing teats on udder health and milk quality, is warranted.  相似文献   

8.
To attract a cow into an automatic milking system (AMS), a certain amount of concentrate pellets is provided while the cow is being milked. If the milking frequency in an AMS is increased, the intake of concentrate pellets might increase accordingly. Replacing conventional starchy pellets with nonstarchy pellets increased milk yield, milk fat, and milk protein and decreased body weight. The hypothesis was that a nonroughage by-product rich in digestible neutral detergent fiber, such as soyhulls and gluten feed, could replace starchy grain in pellets fed in an AMS. Sixty cows were paired by age, milk yield, and days in milk, and were fed a basic mixture ad libitum [16.2 ± 0.35 (mean ± SE) kg of dry matter intake/d per cow] plus a pelleted additive (6 to 14 kg of dry matter/d per cow) that was consumed in the AMS and in a concentrate self-feeder, which could only be entered after passing through the AMS. The 2 feeding regimens differed only in the composition of the pelleted additives: the control group contained 52.9% starchy grain, whereas the experimental group contained 25% starchy grain, plus soyhulls and gluten feed as replacement for part of the grain. Wheat bran in the control ration, a source of fiber with low digestibility, was replaced with more digestible soyhulls and gluten. During the first 60 d in milk, a cow received 10 to 12 kg of concentrate pellets. After 60 DIM, concentrate feed was allocated by milk production: ≤25 kg/d of milk entitled a cow to 2 kg/d of concentrate feed; >25 kg/d of milk entitled a cow to receive 1 kg/d of additional concentrate feed per 5 kg/d of additional milk production, and >60 kg/d of milk entitled a cow to receive 9 kg of concentrate. The concentrate feed was split between the AMS and concentrate self-feeder. The 2 diets resulted in similar frequencies of voluntary milking (3.12 ± 0.03 to 2.65 ± 0.03 visits/d per cow vs. 3.16 ± 0.00 to 2.60 ± 0.01 visits/d per cow). Average milk yields were higher in the experimental group (42.7 ± 0.76 to 39.09 ± 0.33 kg/d per cow vs. 39.69 ± 0.68 to 37.54 ± 0.40 kg/d per cow) and percentages of milk protein (3.02 ± 0.06 to 3.12 ± 0.05% vs. 3.07 ± 0.04 to 3.20 ± 0.04%) and milk fat (3.42 ± 0.17 to 3.44 ± 0.08% vs. 3.38 ± 0.13 to 3.55 ± 0.06%) were similar in the 2 groups. The results suggest that the proposed pellets high in digestible neutral detergent fiber can be allocated via the AMS to selected high-yielding cows without a negative effect on appetite, milk yield, or milk composition while maintaining a high milking frequency.  相似文献   

9.
The objective of this study was to evaluate the response of buffaloes to automatic milking, examining the relationships between milking interval, milk production, and milking time for this species. A total of 7,550 milking records from an average of 40 buffaloes milked by an automatic milking system (AMS) were analyzed during a 3-mo experimental period at a commercial farm with Italian Mediterranean buffaloes in southern Italy. Date and time of animal identification, milk yield, milking duration, milking interval, and average milk flow rate were determined for each milking. The results were also used to predict the maximum number of milkings per day and the optimal number of buffaloes per AMS for different levels of milk production. The average interval period between 2 consecutive milkings was 10.3 h [standard deviation (SD) 3.3]. Overall, 3.4 and 25.7% of the milkings had an interval of ≤6 h or >12 h, respectively. Milking duration averaged 8.3 min per buffalo per milking (SD 2.7). The average milk flow rate was 1.3 kg/min (SD 0.5) at a milk yield of 2.8 kg per milking (SD 1.4). Assuming that the milking station is occupied 80% of the time, the number of milkings ranged from 136 to 152 per day and the optimal number of buffaloes per AMS ranged from 59 to 66 when the production level increased from 2 to 5 kg of milk per milking. Automatic milking systems are suitable for buffalo, opening new options for the management of dairy buffalo farms.  相似文献   

10.
Thirty-eight Italian Friesian first-lactation cows were allocated to 2 groups to evaluate the effect of 1) an automatic milking system (AMS) vs. milking in a milking parlor (MP) on milk fat characteristics; and 2) milking interval (≤480, 481 to 600, 601 to 720, and >720 min) on the same variables. Milk fat was analyzed for content (% vol/vol), natural creaming (% of fat), and free fatty acids (FFA, mEq/100 g of fat). Distribution of milk fat globule size was evaluated to calculate average fat globule diameter (d1), volume-surface average diameter (d32), specific globule surface area, and mean interglobular distance. Milk yield was recorded to calculate hourly milk and milk fat yield. Milking system had no effect on milk yield, milk fat content, and hourly milk fat yield. Milk from AMS had less natural creaming and more FFA content than milk from MP. Fat globule size, globular surface area, and interglobular distance were not affected by milking system per se. Afternoon MP milkings had more fat content and hourly milk fat yield than AMS milkings when milking interval was >480 min. Milk fat FFA content was greater in AMS milkings when milking interval was ≤480 min than in milkings from MP and from AMS when milking interval was >600 min. Milking interval did not affect fat globule size, expressed as d32. Results from this experiment indicate a limited effect of AMS per se on milk fat quality; a more important factor seems to be the increase in milking frequency, generally associated with AMS.  相似文献   

11.
If the milking frequency in an automatic milking system (AMS) is increased, the intake of concentrated pellets in the robot may be raised accordingly. Consumption of a large quantity of starchy grains within a short time can impair the appetite, decrease voluntary visits to the milking stall, and lower intakes of dry matter (DM) and neutral detergent fiber (NDF). Therefore, the hypothesis to be tested in this study was whether conventional starchy pellets fed in the AMS could be replaced with pellets rich in digestible NDF without impairing the cows’ motivation to visit a milking stall voluntarily. Fifty-four cows were paired according to age, milk yield, and days in milk, and were fed a basic mixture along the feeding lane (19.9 kg of DM/cow per d), plus a pelleted additive (approximately 5.4 kg of DM/cow per d) that they obtained in the milking stall and in the concentrate self-feeder that they could enter only after passing through the milking stall. The 2 feeding regimens differed only in the composition of the pelleted additive, which, for the control group, contained 49% starchy grain, and for the experimental group contained 25% starchy grain plus soy hulls and gluten feed as replacement for part of the grain and other low-digestible, NDF-rich feeds. Both diets resulted in similar rates of voluntary milkings (3.31 vs. 3.39 visits/cow per d). Average yields of milk and percentages of milk protein were also similar in the 2 groups. The results suggest that an alternative pellet composition can be allocated in the AMS in conjunction with basic mixture in the feeding lane, without any negative effect on appetite, milk yield, milk composition, or milking frequency of the cows. It also opens the opportunity to increase yields of milk and milk solids by increasing the amount of pelleted concentrates that can be allocated to selected high-yielding cows via the AMS, because this can be done while maintaining a high frequency of voluntary milkings.  相似文献   

12.
Lactating Holstein cows (52 multiparous and 90 primiparous) were monitored over a period of 10 mo to observe effects of grouping primiparous cows (PPC) separately from multiparous cows (MPC) on performance, feeding behavior, feed intake, feed efficiency, and milk production of PPC. Cows were kept in 2 symmetrical pens each equipped with a robotic milking unit, 2 waterers, and 28 feeding spaces. Typically, 100 lactating cows were present at a time, thereby ensuring 1.78 cows per feeding place in each pen. One pen (PP) was composed exclusively of PPC whereas the other pen (PM) included 30% PPC and 70% MPC. Primiparous cows were evenly distributed to each pen by days in milk and daily milk production. As they calved, additional primiparous cows were assigned sequentially to each of the 2 treatment groups; multiparous cows calving during the study were allocated to the PM group. Both PP and PM groups were managed equally and were fed the same basal ration twice daily plus 3 kg/d of concentrate during milking. Individual eating behavior and feed consumption at each visit were monitored electronically. Milk production was recorded daily, and milk composition monthly. Observed arithmetic means and standard errors are presented but application to other management situations is limited because animals within pen were not independent. Total dry matter intake (18.7 vs. 18.1 ± 0.9 kg/d) and milk production (25.9 vs. 25.6 ± 0.8 kg/d) of PPC were similar in both the PM and PP groups, respectively. Primiparous cows in the PP group had numerically more visits to the robotic milking unit (3.26 vs. 2.68 ± 0.15) and to the feed troughs (4.91 vs. 4.02 ± 0.43), but apparently spent less time eating (2.72 vs. 3.22 ± 0.1 h/d) than did PPC in the PM group. Differences in feed efficiency were low but PPC in the PP group had numerically higher feed efficiency at times through 200 d in milk. Alternative grouping strategies illustrate potentially important differential responses among primiparous cows that warrant further study.  相似文献   

13.
The objective of this study was to determine the long-term effects of feeding monensin on methane (CH4) production in lactating dairy cows. Twenty-four lactating Holstein dairy cows (1.46 ± 0.17 parity; 620 ± 5.9 kg of live weight; 92.5 ± 2.62 d in milk) housed in a tie-stall facility were used in the study. The study was conducted as paired comparisons in a completely randomized design with repeated measurements in a color-coded, double-blind experiment. The cows were paired by parity and days in milk and allocated to 1 of 2 treatments: 1) the regular milking cow total mixed ration (TMR) with a forage-to-concentrate ratio of 60:40 (control TMR; placebo premix) vs. a medicated TMR (monensin TMR; regular TMR + 24 mg of Rumensin Premix/kg of dry matter) fed ad libitum. The animals were fed and milked twice daily (feeding at 0830 and 1300 h; milking at 0500 and 1500 h) and CH4 production was measured prior to introducing the treatments and monthly thereafter for 6 mo using an open-circuit indirect calorimetry system. Monensin reduced CH4 production by 7% (expressed as grams per day) and by 9% (expressed as grams per kilogram of body weight), which were sustained for 6 mo (mean, 458.7 vs. 428.7 ± 7.75 g/d and 0.738 vs. 0.675 ± 0.0141, control vs. monensin, respectively). Monensin reduced milk fat percentage by 9% (3.90 vs. 3.53 ± 0.098%, control vs. monensin, respectively) and reduced milk protein by 4% (3.37 vs. 3.23 ± 0.031%, control vs. monensin, respectively). Monensin did not affect the dry matter intake or milk yield of the cows. These results suggest that medicating a 60:40 forage-to-concentrate TMR with 24 mg of Rumensin Premix/kg of dry matter is a viable strategy for reducing CH4 production in lactating Holstein dairy cows.  相似文献   

14.
Milking data of 34 single automatic milking system (AMS) units on 29 Galician dairy farms were analyzed to determine the system capacity in each farm under actual working conditions. Number of cows, milk yield, milkings per cow per day, actual milking time, rejected milking time, cleaning time, and machine downtime were used to determine the number of cows milked per AMS unit to obtain the optimal values of milkings per cow and milk production. Multiple linear regression data analysis was used to model the linear relationship between the dependent variable, milk yield per AMS per year, and the predictor variables: number of cows per AMS, milkings per cow per day, milk flow rate, and rejections per AMS per year. An AMS unit milked 52.7±9.0 cows daily at 2.69±0.28 milkings per cow, with a total milking downtime of 1,947±978 h/yr and a milk yield of 549,734±126,432 kg/yr. The predictor variables cow and milk flow rate had a greater level of influence on the milk yield per AMS than milkings per cow and rejections, and explained the 87% of the variation. The AMS in Galician dairy farms could facilitate an increase of 16±8.5 cows per AMS without impairing milking performance; in this way, the quantity of milk obtained per robot annually could be increased (185,460±137,460 kg). This would make it possible to recoup the cost of the system earlier. In the present situation, the daily milking throughput could be maximized at 2.4 to 2.6 milkings per cow.  相似文献   

15.
The standing and lying behavior patterns of dairy cows, particularly the length of time cows spend standing after milking, have the potential to influence the incidence of intramammary infection (IMI). The objectives were to describe the standing and lying behavior patterns of cows milked with an automatic milking system (AMS) and to determine how these patterns relate to the incidence of IMI. One hundred and eleven lactating Holstein dairy cows were monitored over a 4-mo period. These cows were kept in a sand-bedded freestall barn with 2 pens, each with a free cow traffic AMS. Feed was delivered once daily, and pushed up 2 to 3 times daily. Quarter milk samples were collected for bacteriological culture from each cow once every 4 wk. A new IMI was defined as a positive culture sample following a negative culture. For 7 d before each of the last 3 milk samplings, standing and lying behavior, and times of milking and feed manipulation (feed delivery and push up) were recorded. Daily lying time and lying bout length were negatively related with milk yield (r = −0.23 and −0.20, respectively) and milking frequency (r = −0.32 and −0.20, respectively); milk yield was positively related to milking frequency (r = 0.58). Feed manipulation near the time cows were milked (1 h before 2 h after) resulted in the longest post-milking standing times (mean = 86 min; 95% confidence interval = 78, 94 min), whereas feed manipulation occurring outside that time frame resulted in shorter post-milking standing times. Over the study period, 171 new IMI were detected. Of these new IMI detected, those caused by coagulase-negative staphylococci were the only ones associated with post-milking standing time; as post-milking standing time increased past 2.5 h after milking, the odds of acquiring a new IMI tended to also increase. In summary, standing and lying behavior patterns of cows milked with an AMS were affected by both feed manipulation and their milking activity. Further, the post-milking standing time of cows milked with an AMS can be managed by providing fresh feed, as well as by pushing up feed, frequently throughout the day. Finally, cows that spend long periods of time (>2.5 h) standing following milking may be at higher risk of acquiring a new CNS IMI.  相似文献   

16.
The objective was to compare the effects of 3 management systems in high-yielding dairy cows on metabolic profiles and milk production. Thirty-six multiparous Brown Swiss cows were randomly assigned to 1 of 3 treatment groups (n = 12 cows/group): the control (C) group, in which cows were dried off 56 d before calving and milked twice daily throughout next lactation (305 d); the once daily milking (ODM) group, in which cows were dried off 56 d before calving and milked once daily for the first 4 wk of lactation and twice daily for the remaining lactation; and the continuous milking (CM) group, in which cows were milked twice daily until calving and also during the subsequent lactation. Serum glucose concentrations decreased between wk 1 and 4 exclusively in C cows. Serum concentrations of NEFA and BHBA in the first 4 wk of lactation were highest in C cows compared with ODM and CM cows. Decreased backfat thickness during early lactation and reduction of body condition score were markedly more pronounced in C cows compared with ODM and CM cows. Mean lactational milk yield of C cows [11,310 ± 601 kg of energy-corrected milk (ECM)/305 d] was approximately 16% higher compared with ODM cows (9,531 ± 477 kg of ECM/305 d) and CM cows (9,447 ± 310 kg of ECM/305 d). The lactation curve of CM cows compared with C cows was characterized by a similar time of peak yield (wk 3), a reduced peak yield, and no obvious differences in persistency. Mean percentage of milk protein was significantly higher for CM cows (3.91%) compared with C cows (3.52%). In contrast, once daily milking was accompanied by a reduced and significantly delayed peak yield (wk 8) compared with the control treatment, whereas persistency was better and milk protein (3.79%) was higher in ODM cows than in C cows. In conclusion, continuous milking and once daily milking, targeting the interval before or after calving, respectively, substantially reduced the metabolic challenge of fresh cows and improved milk protein percentage. Continuous milking and once daily milking increased milk protein percentage markedly; furthermore, once daily milking during the first 4 wk of lactation improved the lactation curve.  相似文献   

17.
Milk yield, milking frequency, intermilking interval, teat-cup attachment success rate, and length of the milking procedure are important functional aspects of automatic milking systems (AMS). In this study, these variables were compared for 2 different models of AMS (AMS-1, with free cow traffic, and AMS-2, with selectively guided cow traffic) and auto-tandem milking parlors (ATM) on 4 farms each. Data on milking-stall visits and milkings of 20 cows were recorded on 3 successive days by means of video observations. Data were evaluated with mixed-effects models. Milk yield did not differ among the 3 milking systems. Milking frequency in the AMS was 2.47/d [95% confidence interval (CI) = (2.38, 2.56)], and was significantly higher than the 2 milkings/d in ATM. Milking frequency was lower for cows with a higher number of days in milk (DIM) in AMS-1 [change of −0.057/10 DIM, CI = (−0.070, −0.044)], but remained constant for cows with varying DIM in AMS-2 [change of −0.003/10 DIM, CI = (−0.034, 0.027)]. As a consequence, milking frequency was higher in early lactation [by 0.603, CI = (0.102, 1.103)] and lower in late lactation in AMS-1 than in AMS-2 [by −0.397, CI = (−0.785, −0.008)]. The intermilking interval showed the opposite pattern. Teat-cup attachment was more successful in AMS-1 than in AMS-2 (98.4 vs. 94.3% of the milkings), with some variation among farms (range: AMS-1 96.2 to 99.5%; AMS-2 91.5 to 96.1%). The length of the entire milking process did not differ among the milking systems [454 s, CI = (430, 478)], although the preparation phase was longer [changes in comparison with ATM: in AMS-1 by a factor of 2.90, CI = (2.30, 3.65), and in AMS-2 by 5.15, CI = (4.09, 6.48)] and the actual milking phase was shorter in both AMS-1 and AMS-2 than in ATM [changes in comparison with ATM: in AMS-1 by a factor of 0.76, CI = (0.62, 0.94), and in AMS-2 by 0.75, CI = (0.60, 0.93)]. The admission [changes in comparison with ATM: in AMS-1 by a factor of 2.56, CI = (1.55, 4.22), and in AMS-2 by 3.07, CI = (1.86, 5.08)] and preparation phases lasted longer in AMS-2 than in AMS-1, whereas the time required by the cows to leave the milking stall did not differ among the systems [changes in comparison with ATM: in AMS-1 by a factor of 0.89, CI = (0.55, 1.44), and in AMS-2 by 1.02, CI = (0.63, 1.66)]. In conclusion, different technical approaches to automatic milking led to differences in teat-cup attachment success rates, in the duration of several phases of the milking process, and in milking frequency. The capacity of an AMS could be further improved by shortening the preparation phase and reducing the proportion of failed milkings.  相似文献   

18.
Milk production and hormonal responses to milking in Holstein cows that were milked twice daily, and that either also nursed calves twice daily 2 h after milking for 9 wk after calving (n = 10) or that served as nonnursing controls (n = 8) were examined to assess how nursing affected responses to machine milking. Milk yield at milking during the 9 wk of nursing was lower in nursing cows compared with control cows (26.1 ± 1.0 vs. 35.5 ± 1.1 kg) that were only machine milked. During nursing, the amount drunk by calves increased from 6.5 ± 0.7 kg/d on wk 1 to 12.5 ± 1.4 kg/d on wk 9. When this was added to the amount of milk obtained at milking, nursing cows did not differ from control cows in total milk produced (35.5 ± 1.0 vs. 35.5 ± 1.0 kg). Residual milk yield, after i.v. injection of oxytocin after milking, was higher in nursing cows than in control cows (8.7 ± 0.8 vs. 3.2 ± 0.8 kg). During the 6 wk after weaning, milk production was the same for the nursing and control cows (34.0 ± 1.35 vs. 34.7 ± 1.42 kg). Plasma oxytocin levels during milking were greater for control cows than for nursing cows (31.7 ± 5.4 vs. 18.0 ± 2.8 pg/mL), but were equivalent to concentrations in nursing cows during nursing (35.5 ± 7.5 pg/mL). Plasma concentrations of prolactin and cortisol increased after both milking (control vs. nursing: prolactin: 40.2 ± 6.8 vs. 32.9 ± 6.1 ng/mL; cortisol: 6.4 ± 1.23 vs. 7.4 ± 1.10 ng/mL) and nursing (control vs. nursing: prolactin: 18.6 ± 7.3 vs. 38.9 ± 6.6 ng/mL; cortisol: 2.34 ± 1.15 vs. 7.37 ± 1.04 ng/mL). In contrast to previous studies, there was no obvious advantage for milk production by keeping a calf with the cow. This appears to result from the reduced oxytocin secretion during milking for the nursing cows.  相似文献   

19.
20.
《Journal of dairy science》2022,105(4):3544-3558
Milk production may be reduced before dry-off to decrease the risk of cows developing intramammary infections during the dry period. Such reductions in milk may be possible in automated milking systems (AMS) where milking frequency and feed allocation at the AMS can be controlled at the cow level. This study investigated the effect of dry-off management of cows milked in AMS on milk yield, milking behavior, and somatic cell count (SCC). Using a 2 × 2 factorial arrangement of treatments, applied from d 14 to 1 before dry-off, 445 cows from 5 commercial dairy farms in Quebec, Canada, were assigned within farm to either (1) reduced feed [RF; allowed a maximum of 0.75 kg/d of AMS pellet for the first week (14 to 8 d before dry-off) of treatment, and 0.50 kg/d for the second week (7 to 1 d before dry-off) of treatment], or (2) nonreduced feed (NF; allowed up to 2 kg/d of AMS pellet), and either (1) reduced milking (RM; reduced to 2 milkings/d or as many times as required to yield 17 kg/milking), or (2) nonreduced milking (NM; allowed up to 6 AMS milkings/d) and no maximum production. Feed and milking behavior data, as well as milk yield and SCC were collected from the AMS software. The RF cows had lower AMS feed delivered during the treatment period, as per the experimental design. Across the treatment period, the NF-NM cows had the highest milking frequency (2.7 times/d), followed by the RF-NM cows (2.4 times/d), and then both of the RM groups (1.8 times/d), which did not differ from each other. All cows, except the NF-NM cows, were gradually milked less frequently as dry-off approached. Across the entire 2-wk treatment period before dry-off, cows with RM allowance experienced a higher reduction in milk yield compared with the cows with no milking allowance restrictions (?4.8 vs. ?3.6 kg). Similarly, cows with a RF allocation tended to have a higher reduction in milk yield than cows with NF (?4.6 vs. ?3.7 kg). As result, those cows with both reduced milking permissions and feed allocation at the AMS experienced the greatest drop in milk production before dry-off. There were no differences between treatments for milking frequency or yield in the next lactation. Somatic cell score (calculated from SCC) was not different between treatments in the 2-wk or day before dry-off, nor in the first month after calving. Overall, these data suggest that reducing both milking frequency and feed quantity in the AMS is the most efficient method to decrease milk yield before dry-off, without negatively influencing milking frequency or yield in the next lactation, as well as without affecting milk quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号