首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Compared with floury or high-moisture corns, dry corn with a greater percentage of vitreous endosperm has been demonstrated to be negatively related to starch digestibility and milk yield of lactating dairy cows. Starch granules in corn are encapsulated by hydrophobic prolamin proteins that are innately insoluble in the rumen environment. Corn prolamin proteins are named zein, and laboratory methods to quantify zein exist but are seldom employed in ruminant nutrition because of their arduous nature. In this study, advances in cereal chemistry were combined with rapid turbidimetric methods yielding a modified turbidimetric zein method (mTZM) to quantify zein in whole corn. Ten dry corns containing unique endosperms were evaluated using the mTZM. Corns with flint, dent, floury, or opaque endosperms were found to contain 19.3, 11.3, 5.8, and 4.9 g of zein/100 g of starch, respectively. The ability of mTZM to differentiate corn endosperm types as defined by least significant difference was 2.6 g of zein/100 g of starch. Ten high-moisture corns of varying moisture content were also evaluated using the mTZM. Zein content of high-moisture corns as defined by mTZM ranged from 8.3 to 2.8 g of zein/100 g of starch with a least significant difference of 1.2 g of zein/100 g of starch. The mTZM determined that zein contents of high-moisture, floury, and opaque corns were markedly less than those of flint and dent dry corns, indicating that mTZM has the ability to quantify starch granule encapsulation by hydrophobic prolamin proteins in whole corn.  相似文献   

2.
Interactions of endosperm type of corn grain and the brown midrib 3 (bm3) mutation in corn silage on ruminal kinetics and site of nutrient digestion of lactating dairy cows were evaluated. Eight ruminally and duodenally cannulated cows (72 +/- 8 d in milk; mean +/- SD) were used in a duplicated 4 x 4 Latin square design experiment with a 2 x 2 factorial arrangement of treatments. Treatments were corn grain endosperm type (floury or vitreous) and corn silage type (bm3 or isogenic normal). Diets contained 26% neutral detergent fiber (NDF) and 30% starch. Interactions of treatments were not observed for any measure of digestibility, but digestion kinetics of starch and fiber did interact to affect digestible organic matter intake by affecting dry matter intake. Rate of ruminal starch digestion was faster and rate of ruminal starch passage tended to be slower in diets containing corn grain with floury vs. vitreous endosperm, resulting in a mean increase of 22 units for ruminal starch digestibility. Although compensatory postruminal starch digestion decreased differences among treatments for total tract starch digestibility, starch entering the duodenum was more digestible for grain with floury endosperm compared with vitreous grain, resulting in greater total tract starch digestibility for floury compared with vitreous corn grain. Fermentation rate of potentially digestible NDF was not affected by either bm3 corn silage or greater ruminal starch digestion of floury grain. Brown midrib corn silage increased total tract NDF digestibility vs. control silage by numerically increasing ruminal and postruminal digestibility of NDF. Endosperm type of corn grain greatly influences site of starch digestion and should be considered when formulating diets.  相似文献   

3.
Twenty-four lactating Holstein cows were used in a 6-wk randomized block design trial with a 2 × 2 factorial arrangement of treatments to determine the effects of feeding ground corn (GC) or steam-flaked corn (SFC) in diets based on either annual ryegrass silage (RS) or a 50:50 blend of annual ryegrass and corn silages (BLEND). Experimental diets contained 49.6% forage and were fed as a total mixed ration once daily for 4 wk after a 2-wk preliminary period. No interactions were observed among treatments. Cows fed BLEND consumed more dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) than those fed RS, but total-tract digestibility of OM, NDF, and ADF was greater for RS than for BLEND. No differences in nutrient intake were observed among treatments during wk 4 when nutrient digestibility was measured, but digestibility of DM and OM was greater for SFC than for GC. Cows fed BLEND tended to produce more energy-corrected milk than those fed RS, resulting in improved efficiency (kg of milk per kg of DM intake). When diets were supplemented with SFC, cows consumed less DM and produced more milk that tended to have lower milk fat percentage. Yield of milk protein and efficiency was greatest with SFC compared with GC. Blood glucose and milk urea nitrogen concentrations were similar among treatments, but blood urea nitrogen was greater for cows fed GC compared with those fed SFC. Results of this trial indicate that feeding a blend of annual ryegrass and corn silage is more desirable than feeding diets based on RS as the sole forage. Supplementing diets with SFC improved performance and efficiency compared with GC across forage sources.  相似文献   

4.
The objectives of this study were to determine how feeding diets that differed in dietary neutral detergent fiber (NDF) concentration and in vitro NDF digestibility affects dry matter (DM) intake, ruminal fermentation, and milk production in early lactation dairy cows. Twelve rumen-cannulated, multiparous Holstein cows averaging 38 ± 15 d (±standard deviation) in milk, and producing 40 ± 9 kg of milk daily, were used in a replicated 4 × 4 Latin square design with 28-d periods. Treatment diets were arranged in a 2 × 2 factorial with 28 or 32% dietary NDF (DM basis) and 2 levels of straw NDF digestibility: 1) LD, untreated wheat straw (77% NDF, 41% NDF digestibility) or 2) HD, anhydrous NH3-treated wheat straw (76% NDF, 62% NDF digestibility). All 4 diets consisted of wheat straw, alfalfa silage, corn silage, and a concentrate mix of cracked corn grain, corn gluten meal, 48% soybean meal, and vitamins and minerals. Wheat straw comprised 8.5% DM of the 28% NDF diets and 16% DM of the 32% NDF diets. Cows fed 28% NDF and HD diets produced more milk, fat, and protein than those consuming 32% NDF or LD diets. Dry matter intake was greater for cows consuming 28% NDF diets, but intakes of DM and total NDF were not affected by in vitro NDF digestibility. Intake of digestible NDF was greater for cows consuming HD diets. Ruminal fermentation was not affected by feeding diets that differed in NDF digestibility. Ruminal NDF passage rate was slower for cows fed HD than LD. No interactions of dietary NDF concentration and in vitro NDF digestibility were observed for any parameter measured. Regardless of dietary NDF concentration, increased in vitro NDF digestibility improved intake and production in early lactation dairy cows.  相似文献   

5.
This study investigated the effects of dietary replacement of corn silage (CS) with 2 cultivars of forage millet silages [i.e., regular millet (RM) and sweet millet (SM)] on milk production, apparent total-tract digestibility, and ruminal fermentation characteristics of dairy cows. Fifteen lactating Holstein cows were used in a replicated 3 × 3 Latin square experiment and fed (ad libitum) a high-forage total mixed ration (68:32 forage:concentrate ratio). Dietary treatments included CS (control), RM, and SM diets. Experimental silages constituted 37% of each diet DM. Three ruminally fistulated cows were used to determine the effect of dietary treatments on ruminal fermentation and total-tract nutrient utilization. Relative to CS, RM and SM silages contained 36% more crude protein, 66% more neutral detergent fiber (NDF), and 88% more acid detergent fiber. Cows fed CS consumed more dry matter (DM; 24.4 vs. 22.7 kg/d) and starch (5.7 vs. 3.7 kg/d), but less NDF (7.9 vs. 8.7 kg/d) than cows fed RM or SM. However, DM, starch and NDF intakes were not different between forage millet silage types. Feeding RM relative to CS reduced milk yield (32.7 vs. 35.2 kg/d), energy-corrected milk (35.8 vs. 38.0 kg/d) and SCM (32.7 vs. 35.3 kg/d). However, cows fed SM had similar milk, energy-corrected milk, and solids-corrected milk yields than cows fed CS or RM. Milk efficiency was not affected by dietary treatments. Milk protein concentration was greatest for cows fed CS, intermediate for cows fed SM, and lowest for cows fed RM. Milk concentration of solids-not-fat was lesser, whereas milk urea nitrogen was greater for cows fed RM than for those fed CS. However, millet silage type had no effect on milk solids-not-fat and milk urea nitrogen levels. Concentrations of milk fat, lactose and total solids were not affected by silage type. Ruminal pH and ruminal NH3-N were greater for cows fed RM and SM than for cows fed CS. Total-tract digestibility of DM (average = 67.9%), NDF (average = 53.9%), crude protein (average = 63.3%), and gross energy (average = 67.9%) were not influenced by dietary treatments. It was concluded that cows fed CS performed better than those fed RM or SM likely due to the higher starch and lower NDF intakes. However, no major differences were noted between the 2 forage millet silage cultivars.  相似文献   

6.
Our objective was to evaluate the relative effects of endosperm type and conservation method of corn grain on ruminal kinetics, site of nutrient digestion, and flow of nitrogen fractions to the duodenum in lactating dairy cows. Seven ruminally and duodenally cannulated Holstein cows (73 ± 39 d in milk; mean ± SD) were used in a duplicated 4 × 4 Latin square design with 21-d periods. A 2 × 2 factorial arrangement of treatments was used, with main effects of corn grain endosperm type (floury or vitreous) and conserved as dry ground corn (DGC) or high-moisture corn (HMC). Rations were formulated to contain 27.0% starch, 26.6% neutral detergent fiber (NDF), 19.1% forage NDF, and 16.5% crude protein. Corn grain treatments supplied 86.6% of dietary starch, and alfalfa silage was the sole forage. True ruminal starch digestibility was increased by HMC compared with DGC (87.2 vs. 64.3%) and by floury compared with vitreous corn grain (83.7 vs. 67.7%). The increase for HMC compared with DGC was because of an increase in the degradation rate (33.8 vs. 23.1%/h) and a decrease in passage rate of starch (7.6 vs. 15.2%/h). The increase for floury compared with vitreous corn grain was because of an increase in the degradation rate (31.5 vs. 25.4%/h) and a decrease in rate of starch passage from the rumen (7.9 vs. 14.9%/h). Apparent total-tract starch digestibility was increased by HMC compared with DGC and by floury compared with vitreous corn, but the increase for floury corn was greater for the DGC treatment. Dry ground corn compared with HMC tended to increase nonammonia N flow to the duodenum (466 vs. 431 g/d) by increasing flow of nonammonia nonmicrobial N (211 vs. 111 g/d) despite a decrease in microbial N flow (255 vs. 320 g/d). Vitreous corn increased nonammonia nonmicrobial N flow to the duodenum (187 vs. 135 g/d) compared with floury corn, but microbial N flow to the duodenum was not affected by endosperm type. Efficiency of microbial N production was not affected by treatment. Endosperm type and conservation method of corn grain greatly affect digestion kinetics and ruminal digestibility of starch as well as flow of N fractions to the duodenum and should be considered during diet formulation for lactating cows.  相似文献   

7.
Our objective was to evaluate effects of corn grain endosperm type and fineness of grind on feed intake, feeding behavior, and productive performance of lactating cows. Eight ruminally and duodenally cannulated Holstein cows in mid lactation (130 ± 42 d in milk; mean ± standard deviation) were used in a duplicated 4 × 4 Latin square design with 21-d periods. A 2 × 2 factorial arrangement of treatments was used with main effects of corn grain endosperm type (floury or vitreous) and fineness of grind (fine or medium). Rations included alfalfa silage, corn treatments, protein supplement, minerals, and vitamins and were formulated to contain 29% starch, 27% neutral detergent fiber, 18.2% forage neutral detergent fiber, and 18% crude protein. Corn grain treatments supplied 86.2% of dietary starch. Endosperm was 25% vitreous for the floury treatment and 66% vitreous for the vitreous treatment. The floury treatment increased rate of starch degradation by 94% (19.2 vs. 9.9%/h) and decreased rate of starch passage by 38% (16.1 vs. 25.8%/h), increasing apparent ruminal starch digestibility by 117% (53.7 vs. 24.7%). The floury treatment increased total-tract starch digestibility by 8% (92.2 vs. 85.1%) despite 37% lower postruminal starch digestion for the floury treatment compared with vitreous corn (38.4 vs. 60.7% of starch intake). Fine grind size increased apparent ruminal starch digestibility by 52% (47.2 vs. 31.1%) compared with medium grind size by increasing the rate of starch degradation by 105% (19.5 vs. 9.5%/h) with no effect on rate of starch passage. However, total-tract starch digestibility was not affected by fineness of grind because postruminal starch digestibility was 37% greater for medium compared with fine grind size (57.2 vs. 41.9% of starch intake). Endosperm type did not affect flow of nitrogen (N) fractions to the duodenum or microbial N efficiency, whereas fine grind size increased duodenal flow of nonammonia N by increasing duodenal flow of microbial N by 22% compared with medium grind size (438 vs. 359 g/d) but did not affect apparent total-tract N digestibility. No interactions were detected for any measure of starch digestion, ruminal N metabolism, or flow of N fractions to the duodenum. Endosperm type greatly affected ruminal and total-tract starch digestibility independent of the fineness of grind of corn grain with no effects on flow of N fractions.  相似文献   

8.
Interactions of endosperm type of corn grain and the brown midrib 3 mutation (bm3) in corn silage on feeding behavior, productivity, energy balance, and plasma metabolites of lactating dairy cows were evaluated. Eight ruminally and duodenally cannulated cows (72 +/- 8 d in milk; mean +/- SD) were used in a duplicated 4 x 4 Latin square design experiment with a 2 x 2 factorial arrangement of treatments. Treatments were corn grain endosperm type (floury or vitreous), and corn silage type (bm3 or isogenic control). Diets contained 26% neutral detergent fiber (NDF) and 30% starch. Floury endosperm grain decreased dry matter intake (DMI) 1.9 kg/ d compared with vitreous grain when combined with control corn silage but did not affect DMI when combined with bm3 corn silage. This interaction of treatments occurred because of changes in meal size; floury endosperm grain decreased meal size in control silage diets but increased meal size in bm3 corn silage diets. Ruminal pool sizes reflected DMI differences among diets, suggesting that ruminal fill was not the primary limitation on intake. Brown midrib 3 corn silage reduced rumination time per day and number of rumination bouts per day. Floury endosperm grain decreased 3.5% fat-corrected milk by 1.2 kg/d when combined with control silage but increased 3.5% fat-corrected milk by 2.1 kg/d when combined with bm3 corn silage. Starch and fiber digestibility interact to affect feeding behavior and milk production and production response to bm3 corn silage depends on the grain source that is fed.  相似文献   

9.
The objectives of this study were to investigate the effect of starch and protein interaction on rumen environment, in situ digestion, and total-tract digestibility of nutrients in weaned dairy calves between 8 and 16 wk of age. Sixteen rumen-cannulated calves were randomly divided into 4 dietary treatment groups with 4 calves fed in each treatment. The treatment diets had 2 levels of starch [18%, low starch (LS), or 38%, high starch (HS)] and 2 levels of protein [16%, low protein (LP), or 22%, high protein (HP)] on a dry matter (DM) basis in calf grower: (1) LPLS, (2) LPHS, (3) HPLS, and (4) HPHS. Calves were fed for ad libitum intake (95% assigned grower and 5% grass hay), and refusals were collected weekly. Total-tract digestibility collection and in situ digestibility procedures were performed for each calf at 11 and 15 wk. Samples for in situ digestibility, grass hay (GH), soybean hulls (SBH), wheat middlings (WM), ground corn (GrC), and soybean meal (SBM) were incubated for 9 and 24 h. There was no starch and protein interaction on total-tract digestibility of calves. Total-tract DM, neutral detergent fiber (NDF) and acid detergent fiber (ADF) digestibility, and feed efficiency were affected by both protein and starch inclusion level in calf diet. Total-tract starch digestibility was lower for LS diets. Dry matter digestibility and feed efficiency were greater in calves fed HP and HS diets compared with calves fed LP and LS diets, respectively. Fiber digestibility (NDF and ADF) was less in calves fed HS diets compared with calves fed LS diets but was greater in calves fed HP diets compared with calves fed LP diets. Level of protein did not affect in situ DM and NDF disappearance of GH, but HP increased in situ DM and NDF disappearance of SBH. High-starch diets decreased DM and NDF disappearance of both GH and SBH. At 20 h after feeding, ruminal pH was 0.51 unit higher in calves fed HPHS compared with calves fed LPHS. Total ruminal VFA and proportion of propionate was greater with HS versus LS, whereas proportion of acetate was greater with LS versus HS. The DM disappearance of SBM and WM and NDF disappearance of WM was greater for calves fed HPHS compared with calves fed LPHS at 11 wk of age. In our study, when HP was fed with HS, rumen pH, in situ digestion of WM and SBM, and total-tract digestion of DM, NDF, and ADF increased. This provides evidence for starch–protein interaction in the rumen of recently weaned dairy calves. Improvements in total-tract and in situ digestibility suggest that both protein and starch levels are important for 8- to 16-wk-old calves.  相似文献   

10.
The objective of this study was to investigate the effects of concentrations of forages and corn distillers dried grains with solubles (DDGS) on ruminal fermentation, ruminal kinetics, and total-tract digestibility of nutrients in lactating dairy cows. Four lactating Holstein cows with ruminal cannulas were assigned to a 4 × 4 Latin square in a 2 × 2 factorial arrangement of treatments. Diets were formulated to contain low forage [LF; 17% forage neutral detergent fiber (NDF)] or high forage (HF; 24.5% forage NDF) and DDGS at 0 or 18% (0DG or 18DG) of diet dry matter (DM). Intake of DM was not affected by the diets. Daily mean ruminal pH was affected by forage NDF × DDGS interactions, as the lowest ruminal pH was observed among cows fed LF18DG (6.02). Apparent total-tract digestibility for DM, organic matter, crude protein, NDF, acid detergent fiber, and starch was not affected by diets. Cows fed LF diets had a greater total volatile fatty acid concentration compared with cows fed HF (122 vs. 116 mM). Molar proportions of acetate were greater for HF compared with that of LF diets (62.6 vs. 57.5 mmol/100 mmol) and greater for 0DG diet compared with that of 18DG diets (61.3 vs. 58.7 mmol/100 mmol) diets. The molar proportion of propionate was affected by forage × DDGS interaction as the greatest propionate molar proportion was observed with cows fed LF18DG diet (27.7 mmol/100 mmol). Also, molar proportion of butyrate was affected by forage × DDGS interaction, as the greatest butyrate molar proportion was observed in cows fed HF18DG diet (13.5 mmol/100 mmol). Average fractional dilution rate for all diets was 11.9%/h and was not affected by diets. Fractional passage rate of the solid phase was greater for HF than for LF (4.40 vs. 3.76%/h). The ruminal retention time of solid phase was greater for LF compared with HF diets (27.3 vs. 23.3 h). Fractional passage rate of DDGS was affected by forage × DG interaction, as the highest fractional passage rate of DDGS was observed with cows fed HF18DG diet (7.72%/h). Our results demonstrated that concentrations of forage, DDGS, and their interaction influence ruminal degradation and kinetics of diets fed. Diets formulated at 17% forage NDF at 17% (DM basis) can decrease milk fat concentration compared with diets formulated at 25% forage NDF. Additionally, feeding DDGS at 18% DM basis to lactating dairy cows did not affect milk fat concentration or yield.  相似文献   

11.
The effect of neutral detergent fiber (NDF) degradability of corn silage in diets containing lower and higher NDF concentrations on lactational performance, nutrient digestibility, and ruminal characteristics in lactating Holstein cows was measured. Eight ruminally cannulated Holstein cows averaging 91 ± 4 (standard error) days in milk were used in a replicated 4 × 4 Latin square design with 21-d periods (7-d collection periods). Dietary treatments were formulated to contain either conventional (CON; 48.6% 24-h NDF degradability; NDFD) or brown midrib-3 (BM3; 61.1% 24-h NDFD) corn silage and either lower NDF (LNDF) or higher NDF (HNDF) concentration (32.0 and 35.8% of ration dry matter, DM) by adjusting the dietary forage content (52 and 67% forage, DM basis). The dietary treatments were (1) CON-LNDF, (2) CON-HNDF, (3) BM3-LNDF, and (4) BM3-HNDF. Data were analyzed as a factorial arrangement of diets within a replicated Latin square design with the MIXED procedure of SAS (SAS Institute Inc., Cary, NC) with fixed effects of NDFD, NDF, NDFD × NDF, period(square), and square. Cow within square was the random effect. Time and its interactions with NDFD and NDF were included in the model when appropriate. An interaction between NDFD and NDF content resulted in the HNDF diet decreasing dry matter intake (DMI) with CON corn silage but not with BM3 silage. Cows fed the BM3 corn silage had higher DMI than cows fed the CON corn silage, whereas cows fed the HNDF diet consumed less DM than cows fed the LNDF diet. Cows fed the BM3 diets had greater energy-corrected milk yield, higher milk true protein content, and lower milk urea nitrogen concentration than cows fed CON diets. Additionally, cows fed the BM3 diets had greater total-tract digestibility of organic matter and NDF than cows fed the CON diets. Compared with CON diets, the BMR diets accelerated ruminal NDF turnover. When incorporated into higher NDF diets, corn silage with greater in vitro 24-h NDFD and lower undegradable NDF at 240 h of in vitro fermentation (uNDF240) allowed for greater DMI intake than CON. In contrast, for lower NDF diets, NDFD of corn silage did not affect DMI, which suggests that a threshold level of inclusion of higher NDFD corn silage is necessary to observe enhanced lactational performance. Results suggest that there is a maximum gut fill of dietary uNDF240 and that higher NDFD corn silage can be fed at greater dietary concentrations.  相似文献   

12.
Inclusion of hemicellulose extract (HE) in cattle diets have shown potential for improving fiber digestibility and production efficiency. The objective of this research was to evaluate production and digestibility effects of a HE on midlactation cows. Twelve multiparous Holstein cows (142 ± 44 d in milk, 685 ± 19 kg of body weight) including 4 with ruminal fistula were used in a 2 × 2 Latin square design with 21-d periods. Cows were fed a control (CON) diet containing 55% forage [dry matter (DM) basis, 2/3 corn silage and 1/3 alfalfa hay] or a similar diet where 1.0% of the diet DM was replaced with HE (TRT). Dry matter intake averaged 27.1 and 26.9 kg/d, for CON and TRT respectively, and was not affected by addition of extract. The percentage of milk protein (3.40 vs. 3.29%) was greater, whereas the percentage of milk fat (3.91 vs. 3.80%) tended to be greater, for cows fed the CON compared with the TRT diet. Because of numerically greater milk production (38.8 vs. 39.2 kg/d) for cows fed the TRT diet, no differences were observed in component yields other than lactose (1.86 vs. 1.94 kg/d), which tended to be greater for cows fed the TRT ration. Treatment improved neutral detergent fiber (NDF) digestibility (38.6 vs. 48.1%) for the TRT diet compared with the CON diet but did not affect apparent total-tract DM (67.8 vs. 68.5%), crude protein (67.2 vs. 67.9%), acid detergent fiber (ADF; 37.1 vs. 43.3%), or starch (92.8 vs. 92.2%) digestibility. For in situ determinations, Dacron bags containing corn silage, alfalfa hay, and either the CON or TRT ration were incubated in triplicate in the rumens of the cannulated cows at 0, 3, 6, 9, 12, 24, and 48 h on d 18 of each period. Each total mixed ration was incubated only in cows assigned to the corresponding diet. For corn silage, the rate of disappearance of NDF (1.70 vs. 4.27%) and ADF (1.79 vs. 4.66%) increased for cows fed the TRT diet. For alfalfa hay, the disappearance of fraction A of DM, NDF, and ADF decreased and fraction B of DM and NDF increased with treatment. The rate of disappearance for DM (8.03 vs. 11.04%), NDF (6.30 vs. 10.28%), and ADF (5.52 vs. 9.19%) increased for the alfalfa hay in rumens of treated cows. For the total mixed ration, the disappearance of the A fraction of NDF and ADF increased for cows fed the TRT diet. Supplementing diets of lactating dairy cows with an HE has beneficial effects on fiber degradation characteristics and provides opportunities for improving animal performance.  相似文献   

13.
Interactions of endosperm type of corn grain and the brown midrib 3 mutation (bm3) in corn silage on ruminal fermentation and microbial efficiency of lactating dairy cows were evaluated. Eight ruminally and duodenally cannulated cows (72 +/- 8 d in milk; mean +/- SD) were used in a duplicated 4 x 4 Latin square design experiment with a 2 x 2 factorial arrangement of treatments. Treatments were corn grain endosperm type (floury or vitreous) and corn silage type (bm3 or isogenic normal). Diets contained 26% neutral detergent fiber and 30% starch. Increasing ruminal starch digestibility by replacing vitreous corn grain with floury grain reduced mean and minimum ruminal pH. Brown midrib 3 corn silage reduced mean and minimum ruminal pH and increased total volatile fatty acid concentration. Ruminal pH was positively associated with rate of valerate absorption. Although floury endosperm reduced acetate:propionate ratio in both control and bm3 corn silage diets, it had a greater effect on reducing acetate:propionate ratio for control silage compared with bm3 corn silage. Nonammonia N flow to the duodenum did not differ among treatments and no effects of treatment were detected for microbial N and nonammonia, nonmicrobial N flow. Although treatment effects on ruminal fermentation and ruminal pH were observed, few interactions of treatment were detected and treatments did not affect flow of N fractions to the intestines.  相似文献   

14.
The digestibility of starch provided by coarsely ground corn is often low, which reduces the digestible energy (DE) concentration of the diet. We hypothesized that adding exogenous amylase to diets based on coarsely ground dent corn would increase dietary DE resulting in greater milk production. Total-tract nutrient digestibility was measured in a partially replicated Latin square experiment (6 cows and 4 periods) with a 2 × 2 factorial arrangement of treatments. Diets had 26 or 31% starch with or without exogenous amylase (amylase was added to the concentrate mixes at the feed mill). In the low and high starch diets, coarsely ground dry corn (mean particle size = 1.42 mm) provided 43 and 62% of total dietary starch (corn silage provided most of the remaining starch). No treatment interactions were observed. High starch diets had greater dry matter (DM), organic matter, and energy digestibility than low starch diets, and diets with amylase had greater neutral detergent fiber digestibility than diets without amylase. Digestibility of starch averaged 88% and was not affected by treatment. A long-term (98-d) lactation study with 48 Holstein cows (74 d in milk) was conducted using 3 of the diets (low starch diets with and without amylase and the high starch diet without amylase). Addition of amylase to a diet with 26% starch did not affect intake, milk yield, milk composition, body weight, or body condition. Cows fed the diet with 31% starch had greater DM and DE intakes; yields of milk, fat, and protein; and feed efficiency than those fed diets with 26% starch. Milk composition was not affected by starch concentration. Adding exogenous amylase to a lower starch diet did not make the diet nutritionally equivalent to a higher starch diet.  相似文献   

15.
The effect of linseed oil (LSO) supplementation on total-tract and ruminal nutrient digestibility, N metabolism, and ruminal fluid characteristics was investigated in dairy cows fed diets containing different forage to concentrate ratios (F:C). The experimental design was a 4 x 4 Latin square with 2 x 2 factorial arrangement of treatments. Four lactating Holstein cows were fed a forage-rich diet without LSO (F; F:C = 65:35, dry matter basis), a forage-rich diet with LSO (FO; F:C = 65:32, 3% LSO), a concentrate-rich diet without LSO (C; F:C = 35:65), or a concentrate-rich diet with LSO (CO; F:C = 35:62, 3% LSO). Total-tract digestibility of DM and OM was greater with supplemental LSO. A tendency for greater total-tract digestibility of NDF and ADF also was observed in cows fed LSO. Ruminal digestibility of NDF or ADF decreased when CO was fed compared with C. In contrast, feeding FO increased NDF or ADF digestibility compared with F. Although ruminal starch digestion was nearly complete with all diets, digestibility was greater when cows were fed C or CO compared with F or FO. Bacterial N flow to the duodenum decreased when FO was fed compared with F. In contrast, feeding CO increased bacterial-N flow compared with C. Neither F:C nor LSO supplementation affected ruminal pH or total VFA concentration in ruminal fluid. However, molar proportion of propionate was greater with C or CO compared with F or FO and increased with LSO supplementation regardless of F:C. Molar proportion of n-butyrate decreased with LSO supplementation. Total protozoal numbers in ruminal fluid decreased markedly only when CO was fed. Overall, data show that feeding LSO had no negative effects on total-tract digestion in dairy cows but may decrease ruminal fiber digestibility when fed with high-concentrate diets. The widely spread idea that LSO decreases digestibility, arising from studies with sheep, did not seem to apply to lactating cows fed 3% LSO.  相似文献   

16.
The primary objective of this study was to determine lactation performance by dairy cows fed nutridense (ND), dual-purpose (DP), or brown midrib (BM) corn silage hybrids at the same concentration in the diets. A secondary objective was to determine lactation performance by dairy cows fed NutriDense corn silage at a higher concentration in the diet. One hundred twenty-eight Holstein and Holstein × Jersey cows (105 ± 38 d in milk) were stratified by breed and parity and randomly assigned to 16 pens of 8 cows each. Pens were then randomly assigned to 1 of 4 treatments. Three treatment total mixed rations (TMR; DP40, BM40, and ND40) contained 40% of dry matter (DM) from the respective corn silage hybrid and 20% of DM from alfalfa silage. The fourth treatment TMR had ND corn silage as the sole forage at 65% of DM (ND65). A 2-wk covariate adjustment period preceded the treatment period, with all pens receiving a TMR with equal proportions of DP40, BM40, and ND40. Following the covariate period, cows were fed their assigned treatment diets for 11 wk. nutridense corn silage had greater starch and lower neutral detergent fiber (NDF) content than DP or BM, resulting in ND40 having greater energy content (73.2% of total digestible nutrients, TDN) than DP40 or BM40 (71.9 and 71.4% TDN, respectively). Cows fed BM40 had greater milk yield than DP40, whereas ND40 tended to have greater milk yield and had greater protein and lactose yields compared with DP40. No differences in intake, component-corrected milk yields, or feed efficiency were detected between DP40, BM40, and ND40. Milk yield differences may be due to increased starch intake for ND40 and increased digestible NDF intake for BM40 compared with DP40. Intake and milk yield and composition were similar for ND40 compared with BM40, possibly due to counteracting effects of higher starch intake for ND40 and higher digestible NDF intake for BM40. Feeding ND65 reduced intake, and thus milk and component yields, compared with ND40 due to either increased ruminal starch digestibility or increased rumen fill for ND65. Nutridense corn silage was a viable alternative to both DP and BM at 40% of diet DM; however, lactation performance was reduced when nutridense corn silage was fed at 65% of DM.  相似文献   

17.
The objective of this experiment was to determine whether increasing the dietary neutral detergent fiber (NDF):starch ratio affected NDF digestibility when diets were formulated to have equal in situ NDF digestibility. Six lactating Holstein cows were fed 1 of 3 diets in a replicated 3 x 3 Latin square. All diets had 41.5% of the dry matter (DM) as corn silage but the concentration of corn grain varied from 23.3 to 34.8% and the NDF:starch ratios were 0.74, 0.95, and 1.27. As corn grain increased, the concentration of a mixture of 54% soyhulls and 46% cottonseed hulls decreased. The soyhull:cottonseed hull mixture had the same in situ NDF digestibility as the corn silage. All diets had 18% forage NDF but starch concentration varied from 25.4 to 33.3% and NDF varied from 24.7 to 32.2%. Intake tended to increase as the NDF:starch ratio increased. Total tract digestibility (measured by total collection of feces and urine) of dry matter and energy decreased linearly as the NDF:starch ratio increased, but NDF digestibility was not affected by treatment. Retention of N increased linearly as the NDF:starch ratio increased. As dietary NDF:starch ratio increased, ruminal pH was not affected, but the concentration of total volatile fatty acids (VFA) decreased and the VFA profile was altered by diet. Consistent with the observed changes in ruminal VFA, milk fat percentage increased with increasing dietary NDF:starch. Intake of digestible energy and output of energy in milk and body weight change was not affected by treatment.  相似文献   

18.
The experimental objective was to determine the effect of dietary supplementation with live-cell yeast (LCY; Procreatin-7, Lesaffre Feed Additives, Milwaukee, WI) at 2 dosages in high-starch (HS) diets [30% starch in dry matter (DM)] on lactation performance, ruminal fermentation, and total-tract nutrient digestibility in dairy cows compared with HS or low-starch (LS; 20% starch in DM) non-LCY diets. Sixty-four multiparous Holstein cows (114 ± 37 d in milk and 726 ± 74 kg of body weight at trial initiation) were randomly assigned to 32 electronic gate feeders (2 cows per feeder), which were randomly assigned to 1 of 4 treatments in a completely randomized design. A 2-wk covariate adjustment period with cows fed a 50:50 mixture of the HS and LS diets was followed by a 12-wk treatment period with cows fed their assigned treatment diets. The HS diets were fed without (HS0) and with 2 (HS2) or 4 (HS4) g/cow per day of LCY. The LS diet did not contain LCY (LS0) and was formulated by partially replacing dry ground shelled corn with soy hulls. Cows fed LS0 consumed more DM than cows fed HS diets during wk 3, 10, 11, and 12. Yields of actual (44.5 kg/d, on average), fat-, energy-, and solids-corrected milk were unaffected by treatment. Milk fat content tended to be greater for LS0 than for HS0 and HS2 but not different from HS4. Milk urea nitrogen contents were greater for cows fed LS0 than for cows fed the HS diets. Feed conversion (kg of milk/kg of DM intake) was numerically greater for HS diets than for LS0. Ruminal pH was unaffected by treatment. Ruminal molar proportion of acetate was greater, whereas that of propionate was lower, for LS0 compared with HS diets. Dry matter and organic matter digestibilities were greater for HS2 and HS4 than for HS0. Digestibility of neutral detergent fiber was greater for HS4 than for HS0 and HS2. Dry matter, organic matter, and neutral detergent fiber digestibilities were greater for LS0 than for HS diets; starch digestibility was greater for LS0 than for HS0 and HS4. Feeding LS0 increased DM intake and milk fat content, but reduced feed conversions. The addition of 4 g/cow per day of LCY to HS diets tended to increase milk fat content and increased total-tract fiber digestibility in dairy cows.  相似文献   

19.
《Journal of dairy science》2019,102(11):9814-9826
Dry matter intake, lactation performance, and chewing behavior of multiparous Holstein cows (n = 15) fed diets containing a novel bm3 corn silage hybrid with floury kernel genetics were compared with cows fed diets containing commercially available conventional and bm3 hybrids using a replicated 3 × 3 Latin square design with 28-d periods. Cows were housed in tiestalls, milked 3 times/d, and fed a total mixed ration containing 49.0% (dry matter basis) of (1) a conventional corn silage hybrid (CONV); (2) a brown midrib bm3 hybrid (BMR); or (3) a bm3 hybrid with floury kernel genetics (BMRFL). All diets contained 6.3% hay crop silage and 44.7% concentrate. Dietary nutrient composition averaged 32.7% neutral detergent fiber (NDF) and 26.3 starch (% of dry matter). Data were analyzed by ANOVA using the MIXED procedure in SAS (SAS Institute Inc., Cary, NC). The dry matter intake was greater for cows fed BMR (28.0 kg/d) compared with CONV (26.8 kg/d), whereas dry matter intake for cows fed BMRFL was intermediate (27.6 kg/d). Energy-corrected milk (ECM) yield was greater for cows fed BMR (50.3 kg/d) and BMRFL (51.8 kg/d) compared with CONV (47.2 kg/d). Milk fat yield was higher for cows fed BMRFL (1.87 kg/d) compared with CONV (1.74 kg/d) and BMR (1.80 kg/d). Milk protein yield was greater for cows fed BMR (1.49 kg/d) and BMRFL (1.54 kg/d) compared with CONV (1.36 kg/d). Milk urea-N was reduced for cows fed BMR (11.61 mg/dL) and BMRFL (11.16 mg/dL) compared with CONV (13.60 mg/dL). Feed efficiency (ECM/dry matter intake) was higher for cows fed BMRFL (1.87) compared with CONV (1.76) and BMR (1.79). Milk N efficiency was greatest for cows fed BMRFL (40.4%) followed by BMR (38.1%) and finally CONV (35.3%). Cows fed CONV chewed 5 min more per kilograms of NDF consumed than cows fed either of the BMR hybrids. No differences were observed among diets in apparent total-tract digestibility of NDF (58.1%) or starch (99.3%). Overall lactational performance was enhanced for cows fed diets containing both BMR and BMRFL hybrids versus CONV. In addition, feeding the BMRFL corn silage improved efficiency of component-corrected milk production and milk N efficiency compared with the CONV and BMR silages.  相似文献   

20.
The objective of this experiment was to evaluate acid-insoluble ash (AIA) and indigestible NDF (iNDF) as intrinsic digestibility markers in comparison with total fecal collection (TC) in dairy cows fed corn silage- and alfalfa haylage-based diets. The experiment was part of a larger experiment, which involved 8 Holstein cows [102 ± 28.4 d in milk, 26.4 ± 0.27 kg/d of dry matter (DM) intake, and 43 ± 5.3 kg/d milk yield]. The experimental design was a replicated 4 × 4 Latin square with the following treatments: metabolizable protein (MP)-adequate diet [15.6% crude protein (CP); high-CP], MP-deficient diet (14.0% CP; low-CP), and 2 other low-CP diets supplemented (top-dressed) with ruminally protected Lys or Lys and Met. Data for the 3 low-CP diets were combined for this analysis. Total feces were collected for 5 consecutive days during each period to estimate total-tract apparent digestibility. Digestibility was also estimated using AIA (digestion with 2 N HCl) and iNDF (12-d ruminal incubation in 25-μm-pore-size bags). Significant diet × digestibility method interactions were observed for fecal output of nutrients and digestibility. Fecal output of nutrients estimated using AIA or iNDF was lower compared with TC and fecal output of DM, organic matter, and CP tended to be higher for iNDF compared with AIA for the high-CP diet. For the low-CP diet, however, fecal output of all nutrients was lower for AIA compared with TC and was higher for iNDF compared with TC. Data from this experiment showed that, compared with TC, AIA underestimated fecal output and overestimated digestibility, particularly evident with the fiber fractions and the protein-deficient diet. Compared with TC, fecal output was overestimated and digestibility of the low-CP diet was underestimated when iNDF was used as a marker, although the magnitude of the difference was smaller compared with that for AIA. In the conditions of the current study, iNDF appeared to be a more reliable digestibility marker than AIA in terms of detecting dietary differences in apparent digestibility of some nutrients, but significant diet × marker interactions existed that need to be considered when estimating total-tract digestibility using intrinsic markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号