首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 281 毫秒
1.
基于半导体激光短阵列的976 nm高功率光纤耦合模块   总被引:4,自引:1,他引:3  
采用12只出射波长为976 nm的传导冷却半导体激光短阵列为发光单元,研制出了百瓦级高功率光纤耦合模块.首先,利用光束转换器(BTS)和柱透镜对每只半导体激光短阵列进行光束整形,使得快慢轴方向光束质量接近并且发散角相同;然后,应用空间合束技术将每6只半导体激光短阵列在垂直方向上叠加,形成一个激光组,并利用偏振分束器(PBS)将两个激光组偏振合束;最后利用优化设计的三片式聚焦镜将激光耦合到光纤中.实验结果表明:该光纤模块的连续输出激光功率可达418.9 W,光纤芯径仅为400 μm,数值孔径(NA)为0.22,由此可得到激光亮度为2.19 MW/(cm2·str).利用Matlab软件分析光纤出射的光束形貌为平顶分布,显示其适合用于金属材料的硬化和焊接等领域.最后测量了模块的光谱,电流从20 A增加到50 A时,激光的峰值波长漂移了6.8 nm,并且在50 A时光谱宽度为4.12nm,表明该光纤耦合模块散热良好.同其它类型激光器相比,本激光模块电光转换效率和出光功率高,适用于材料加工和泵浦光纤激光器等领域.  相似文献   

2.
808nm和980nm半导体激光迭阵波长耦合技术   总被引:4,自引:2,他引:2  
为提高半导体激光器输出光功率,可将多个半导体激光器输出光束耦合成一束激光直接输出或者由光纤耦合输出,以提高半导体激光源的亮度及光束质量.本文采用波长耦合技术进行激光合束,将两种不同波长的半导体激光束通过非相干技术经波长耦合器件耦合输出以实现大功率高效率输出.介绍了非相干耦合技术中波长耦合原理及关键技术,根据波长需要设计了耦合器件,并自行设计光学系统对光束进行扩束聚焦.实验将808 nm和980 nm两半导体激光迭阵光束通过上述技术进行合束, 最终实现了更高功率输出,耦合效率达70%,光斑大小为3 mm×3 mm,可满足将半导体激光器直接应用于熔覆、焊接等场合的要求.  相似文献   

3.
针对单个808 nm单管半导体激光器输出功率低,采用端面泵浦方式对光纤激光器进行泵浦时受到限制的问题,本文利用空间合束技术制成高亮度半导体激光器光纤耦合模块来提高808 nm单管半导体激光器泵浦掺Nd3+双包层光纤激光器的效率.首先,通过微透镜对每个单管半导体激光器进行快慢轴准直;然后,使用反射棱镜对每个激光器发出的光进行空间合束;最后,利用自行设计的扩束系统将合束后的光束进行扩束,聚焦进入光纤,从而极大地提高光纤耦合模块的亮度.实验中将4只连续输出功率为5W的单管半导体激光器发出的光束耦合进芯径为105 μm、数值孔径(NA)为0.2的光纤,当工作电流为5.8A时,通过光纤输出的功率为15.22W,耦合效率达到74%,亮度超过1.4 MW/cm2·sr.  相似文献   

4.
808nm高亮度半导体激光器光纤耦合器件   总被引:1,自引:0,他引:1  
针对单个808nm单管半导体激光器输出功率低,采用端面泵浦方式对光纤激光器进行泵浦时受到限制的问题,本文利用空间合束技术制成高亮度半导体激光器光纤耦合模块来提高808nm单管半导体激光器泵浦掺Nd3+双包层光纤激光器的效率。首先,通过微透镜对每个单管半导体激光器进行快慢轴准直;然后,使用反射棱镜对每个激光器发出的光进行空间合束;最后,利用自行设计的扩束系统将合束后的光束进行扩束,聚焦进入光纤,从而极大地提高光纤耦合模块的亮度。实验中将4只连续输出功率为5W的单管半导体激光器发出的光束耦合进芯径为105μm、数值孔径(NA)为0.2的光纤,当工作电流为5.8A时,通过光纤输出的功率为15.22W,耦合效率达到74%,亮度超过1.4MW/cm2.sr。  相似文献   

5.
为研究闪电特性,设计了用于闪电实验室场景模拟的大变倍比近红外无焦激光扩束光学系统,用于模拟不同光斑尺寸的闪电单元.根据高斯光学几何法计算系统外形尺寸,合理确定了各组份的口径及光焦度;由ZEMAX软件包优化设计得到系统的光学结构参数,并对系统整体性能进行了分析评价.该系统变倍比为13,出射光束光斑均匀、无衍射环,满足研究闪电信号特性的需求.激光扩束系统的中心工作波长为777.4 nm,入射光束直径为1.0 mm,入射激光光束在步进电机驱动下连续可调,使得出射光束可从φ0.8 mm变化到φ10.6 mm.系统具有镜片少,结构简单,变焦轨迹平滑无卡滞等优点,可用于模拟不同尺寸的闪电单元.  相似文献   

6.
880nm半导体激光器列阵及光纤耦合模块   总被引:8,自引:5,他引:3  
为了使半导体激光泵浦Nd∶YVO4固体激光器能获得大功率、高光束质量、线偏振的激光输出,利用PICS3D软件设计了InGaAs/GaAs应变量子阱结构,制作了发射波长为880 nm的大功率半导体激光器列阵。该激光器列阵激射区单元宽为100μm,周期为200μm,填充因子为50%,激光器列阵CS封装模块室温连续输出功率达60.8 W,光谱半高全宽(FWHM)为2.4 nm。为进一步改善大功率半导体激光器列阵的光束质量,增加半导体激光端面泵浦功率密度,采用阶梯反射镜组对880 nm大功率半导体激光器列阵进行了光束整形,利用阶梯镜金属表面反射率受近红外波长变化影响小的特点,研制出高稳定性、大功率光纤耦合模块。模块输出功率为44.9 W,光-光耦合效率达73.8%,尾纤芯径Φ为400μm,数值孔径(NA)为0.22。  相似文献   

7.
光谱成像系统受色差影响会导致图谱混叠,本文将单像素成像以及计算关联成像分别与光谱成像系统相结合,并在系统中引入900~1 700 nm适用的消色差透镜来校正色差。首先计算出不同胶合消色差透镜的色差大小并以此选取透镜,所选消色差透镜相较其它透镜对色差校正可以提高一个量级。其次分析了色差对光谱成像系统的影响以及单像素成像和计算关联成像的差异。最后仿真和试验分析单像素光谱成像和计算关联光谱成像特点。试验结果表明对于900~1 700 nm的近红外光谱成像,基于消色差透镜的单像素光谱成像系统取得了更好的图像重构结果,其峰值信噪比(Peak Signal to Noise Ratio,PSNR)提高了3.93 dB,结构相似度(Structural Similarity, SSIM)提高了0.96%。消色差透镜的单像素光谱成像系统在近红外光谱成像中重构图像效果优于无消色差透镜的计算关联光谱成像。  相似文献   

8.
10kW连续输出半导体激光熔覆光源   总被引:3,自引:0,他引:3  
针对于目前国内半导体激光加工熔覆光源主要依赖于国外进口的局面,研制了连续输出功率达10kW的半导体激光熔覆光源。利用ZEMAX光学设计软件模拟半导体激光光路,包括光束整形、准直及聚焦透镜的设计等。实验中采用2只波长为915nm和2只波长为976nm的半导体激光叠阵,通过偏振合束和波长合束技术实现它的合束。由自行设计的聚焦系统进行了聚焦实验,结果显示,当模块工作电流为122A时,光源最大输出功率为10 120 W,电-光转换效率为46%,在工作面的聚焦光斑为2.5mm×18mm,可满足工业中大面积高速激光熔覆和表面热处理的要求。  相似文献   

9.
808nm980nm半导体激光迭阵波长耦合技术   总被引:1,自引:1,他引:0  
随着半导体激光器在工业、军事、核能等领域的广泛应用,单个半导体激光迭阵的光功率已经不能满足实际需求,这就要求将多个半导体激光器耦合成一束激光,可直接输出或者由光纤耦合输出,以提高半导体光源亮度及光束质量。文章通过采用波长耦合技术进行激光合束,将两种不同波长的半导体激光束通过非相干技术经波长耦合器件耦合输出以实现大功率高效率输出,便于满足工业加工需要。介绍了非相干耦合技术中波长耦合原理及关键技术,根据波长需要设计耦合器件,并自行设计采用光学系统对光束进行扩束聚焦,通过实验将808nm和980nm两半导体激光迭阵光束通过此技术进行合束, 最终实现更高功率输出,耦合效率70%,光斑大小为3×3mm2,目前国内没有对此项技术进行研究。  相似文献   

10.
视网膜细胞显微镜的照明系统   总被引:1,自引:0,他引:1  
为满足视网膜细胞成像照明光束的高亮度、窄谱宽要求,提出了一种用于视网膜细胞成像的照明系统,将半导体激光器发出的632.8nm激光耦合到芯径为105μm的多模光纤中,用聚光镜将多模光纤的出光端汇聚到一个旋转毛玻璃上,再用一个投射物镜将毛玻璃上的光源像投射到眼睛里照亮视网膜。试验发现该照明方法很好地消除了激光散斑,满足视网膜显微成像对高亮度光源的要求,光源有较窄的谱宽,成像系统色差很小,成像质量优于采用传统氙灯做照明光源的图像。该照明系统能较好地满足视网膜显微成像。  相似文献   

11.
随着半导体激光自身输出功率和转换效率的提升,半导体激光已经广泛的应用于激光加工领域。本文针对目前激光加工领域对半导体激光硬化光源的需求,研制了波长为976nm的连续输出半导体激光硬化光源。该光源采用空间/偏振合束工艺达到了较高的合束效率,采用柱面微透镜阵列分割与聚焦镜复合较好地匀化了巴条激光器慢轴方向固有的光强起伏,使聚焦光斑的光强呈平顶分布。最后对该光源进行了实验装调和测试。结果表明,在工作电流为93A时,光源的最大输出功率为5 120W,电光转换效率达47%,光斑尺寸为2mm×16mm,光斑分布为平顶分布,平整度大于90%,满足工业中对大面积、高效率激光硬化的要求。  相似文献   

12.
介绍了在大屏幕激光显示系统中光纤混色技术的原理,并且通过实验方法讨论了在激光和光纤耦合过程中透镜的选择、数值孔径的匹配、消色差组合透镜的作用、对入射光线的要求和光能的损失等问题,从而能提高激光经光纤混色后的光束成象质量。  相似文献   

13.
全固态589 nm复合腔连续波和频激光器   总被引:24,自引:5,他引:19  
给出了一种复合腔结构和频激光器,用2台激光二极管阵列(LDA)经过光纤耦合分别单独端面抽运Nd:YVO4和Nd:YAG晶体,其中Nd:YVO4和Nd:YAG晶体所选择的能级跃迁分别为4F3/2-4I11/24F3/2-4I13/2,其对应激光跃迁波长分别为1 064 nm和1 319 nm,两基频激光束分别在两个子谐振腔中振荡,在其交叠区利用KTP II类临界相位匹配(CPM)进行腔内和频,获得了589 nm的和频激光。当抽运功率为8 W/14 W时获得了340 mW连续波TEM00黄激光输出。光束质量因子M2<1.2,激光输出功率噪声低,4 h功率不稳定度小于±3%。该复合腔结构是实现LDA泵浦589 nm全固态黄光激光器一种有效的和频方法。  相似文献   

14.
考虑不同的激光加工方式对激光功率密度和激光光斑尺寸的要求不同,研究了如何通过调整光路设计实现各种尺寸的聚焦光斑输出,使半导体激光器满足不同激光加工方式的需求.利用ZEMAX光学设计软件模拟半导体激光光路,包括光束整形、准直、聚焦等光束变换方式,实现了多种尺寸的光斑输出.实验中采用16个bar叠加而成的980 nm半导体激光叠阵,阈值电流为6.4A,最大工作电流为84.8A,最大输出功率为1 280 W,总的电-光转换效率为58.9%.准直后快轴的发散角小于4 mrad,慢轴的发散角小于20 mrad.通过实验对该激光叠阵进行光束整形和扩束准直、聚焦,最终实现了功率为1 031 W的激光输出,聚焦镜焦距为300 mm时的聚焦光斑尺寸达1.2 mm×1.5 mm,功率密度达3.8×104 W/cm2,可以用于金属的表面重熔、合金化、熔覆和热导型焊接.  相似文献   

15.
针对单颗激光二极管光功率过高不能直接用于激光液晶电视光源阵列的限制,本文设计了将高功率激光束分为多束功率接近的子光束的扫描分光系统,从而为液晶电视提供激光背光。系统中激光器发出的准直光束经过扫描振镜进行二维扫描后,经凸透镜和柱面透镜会聚成一条细线型光束耦合进一维多模光纤阵列,从而达到分光的目的。此外,基于扫描振镜和多模光纤实现了系统散斑的抑制。实验结果显示,11根光纤的平均单根出射功率为674.13μW,离散系数为16%,平均散斑对比度为0.162。使用激光作为背光源的激光液晶电视因其优秀的显示性能而具备强大的市场竞争力和广阔的市场前景。  相似文献   

16.
设计了一种能应用于野外环境的便携式二维激光位移传感器,能够实时探On,0635nm激光在传感器靶面所呈光斑的二维位置坐标。利用CCD图像传感器和DSP数字信号处理电路进行图像的采集和处理。采用窄带滤光片和中性密度衰减滤光片消除太阳光的干扰,提高了图像对比度。采用超短焦距大视场镜头将传感器靶面成像在CCD靶面上,增大了量程,缩小了体积。编写算法校正了图像畸变。最后通过实验验证了该传感器有较高的测量精度。  相似文献   

17.
LDA耦合系统透镜导管的理论与实验研究   总被引:2,自引:0,他引:2  
用光线追迹的方法,理论推导了透镜导管各参数优化的一般公式,给出了优化参数;在此基础上,模拟了导管内光线的传输,统计了透镜导管出射光束的强度分布,讨论了各参数对耦合效果的影响。依据理论优化的结果,设计加工了透镜导管并进行了耦合实验,测量了输出光束的强度分布,给出了光斑图像。实验测得耦合效率高于91%,输出光束强度分布平滑均匀,光斑质量良好,与理论模拟吻合并优于以往的研究结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号