首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
本文使用基于机器视觉的显微测量技术对挠性接头的薄筋厚度进行高精度在线测量。测量时,挠性接头的薄筋轮廓经光源照明后,通过高放大倍率成像镜头成像在CCD上,薄筋轮廓图像经图像预处理、分割、边缘提取、参数计算等一系列图像处理后,最终得到薄筋厚度的实际尺寸。经实验证明,系统测量重复性精度为±0.4μm,不确定度优于1μm。  相似文献   

2.
视网膜细胞显微镜的照明系统   总被引:1,自引:0,他引:1  
为满足视网膜细胞成像照明光束的高亮度、窄谱宽要求,提出了一种用于视网膜细胞成像的照明系统,将半导体激光器发出的632.8nm激光耦合到芯径为105μm的多模光纤中,用聚光镜将多模光纤的出光端汇聚到一个旋转毛玻璃上,再用一个投射物镜将毛玻璃上的光源像投射到眼睛里照亮视网膜。试验发现该照明方法很好地消除了激光散斑,满足视网膜显微成像对高亮度光源的要求,光源有较窄的谱宽,成像系统色差很小,成像质量优于采用传统氙灯做照明光源的图像。该照明系统能较好地满足视网膜显微成像。  相似文献   

3.
目前对光纤定位单元定位精度的检测所使用的测量手段是摄影测量,由于被测光纤的孔径非常小,使得这种测量方法的分辨率不高。该文提出了一种新的测量方法,检测装置由显微镜、CCD相机、二维精密移动平台组成。被测光纤通过显微镜放大成像于CCD中,通过对CCD所拍摄照片的实时处理,建立位置反馈机制,实时操控二维精密移动平台追随光纤运动,光纤在运动中始终成像于CCD视场中心,通过读取移动平台坐标的变化来表征光纤移动的位置变化。实验结果表明,该套测量系统的分辨率达到了0.1μm,重复定位精度1.5μm,实现了高精度的检测要求。  相似文献   

4.
大量程高精度三维姿态角测量系统设计   总被引:1,自引:0,他引:1  
基于针孔成像和双矢量定姿原理,设计一种使用单图像传感器实现大量程高精度三维姿态角测量的方法.根据系统要求设计双基准平行光源,采用FPGA单芯片实时实现图像传感器的驱动成像、光斑的分割与质心定位及与USB之间的快速通信,通过光斑质心坐标计算得到双基准平行光源的方向矢量,根据双矢量定姿原理计算姿态敏感器的旋转矩阵,得到三维姿态角;根据针孔成像模型,建立姿态敏感器的内外参数统一标定模型,对测量系统进行标定,标定结果和测量实验表明,三维姿态角测量系统的视场范围达到19.6°×19.6°,俯仰角、偏航角、滚动角的精度达到9.9″、9.3″、80.2″.  相似文献   

5.
结合透视投影模型、非参数化的光学畸变模型以及光束平差算法,提出并实现了一种标定显微立体视觉系统光路的方法。首先,通过光刻方法制作了用于显微立体视觉系统标定的标定参考物,并利用待标定系统采集标定参考物不同方位的图像。然后,基于非参数化的光学畸变模型,采用样条曲面计算得到显微立体视觉系统的畸变校正场,并结合透视投影模型建立显微立体视觉系统的完整成像模型。最后,利用光束平差算法对所建立的成像模型进行标定计算和优化调整。搭建了显微立体视觉小尺度测量装置,验证了提出的标定方法的可行性。通过标定获得了测量装置两个光路的焦距和相对方位等参数,并借助于高精度四轴位移台对标定结果进行了精度验证。结果表明,采用本文方法标定后位移测量的精度优于1%,能够满足微胀形实验中三维变形测量的要求。该标定方法也可用于其他显微视觉检测领域。  相似文献   

6.
本文基于柔性铰链原理,设计了由两个并列的四边形柔性铰链构成的狭缝机构.该机构的特点是内摩擦小、运动灵敏、位移精度高.而且,两个四边形柔性铰链可在同一块弹性材料板上加工而成,易于实现高精度的制造.由单片机、步进电机、螺旋副、圆锥顶杆和光栅副构成的闭环系统实现了狭缝宽度的自动调节.尤其是光栅副的主光栅和指示光栅分别直接安装于两四边形柔性铰链上,光栅输出可直接反映狭缝宽度的变化,有效地补偿了调节系统机械部分的误差对缝宽调节精度的影响.主要技术指标缝宽调节范围0~2 mm,调节精度±1μm,缝宽重现性±1 μm,狭缝中心位置精度±4μm.  相似文献   

7.
金熠  李为民  刑晓政 《仪器仪表学报》2004,25(Z1):1047-1048
给出了LAMOST(大天区多目标光纤光谱天文望远镜)光纤定位子系统的测量装置.它由一块面阵CCD,一个图像采集卡和一个光学镜头组成.光纤位于子系统焦面,由面阵CCD拍摄下来通过图像采集卡传送至主机.利用光重心法就可以得到光纤的位置.着重介绍了测量装置的标定方法.测量装置的系统误差可以通过标定过程得到,而且像场畸变可以通过四次曲面拟和来进行修正.本测量装置可以精确地测量子系统中的光纤位置,测量精度为10μm.  相似文献   

8.
投影法CCD测径系统   总被引:4,自引:0,他引:4  
文中介绍以线阵CCD作为光电传感器的投影放大法线径测量系统,着重分析提高系统稳定性和测量精度的方法。系统以半导体激光器为光源,成像系统采用物方远心光路。对阴影图像进行一阶微分并求其局部重心点作为其边缘特征点。对光学系统放大倍数和成像系统像差分别进行线性、非线性标定以提高测量精度。  相似文献   

9.
为了解决微内尺度的精密测量问题,提出了一种基于正交傅里叶-梅林矩(OFMM’s)定位的双光纤耦合瞄准触发式微内尺度测量方法。该方法通过耦合器实现光能量在不同光纤间的反向传输,把双光纤传感器测头的横向位移量转化为光束的偏转量,通过显微成像系统把此偏转量转化为CCD图像捕捉系统更大的横向位移量。为提高测量精度,运用OFMM’s的幅值旋转不变性和独特的图像形状细节特征的描述能力对CCD图像捕捉系统的图像信号进行亚像素定位;根据OFMM’s的实际位置进行补偿以提高输出图像边缘的定位精度,从而提高测量精度。对OFMM’s的定位精度及传感器性能进行了实验验证,并依据JJF(黑)8-2008,利用自行研制的微小孔径测量机实现了对直径为200μm、深2 000μm深盲孔的直径测量,其测量重复性不确定度优于0.25μm。  相似文献   

10.
设计了一种即有目视观测系统又有视频显示的智能无损检测系统。检测系统由含LED光源的照明系统、成像光学系统、高分辨率面阵CCD传感器件、显示系统四部分构成。利用光学设计软件ZEMAX设计了视场角为85°.探测距离为5∽100mm的光学系统.该系统具有结构紧凑、重量轻、方便携带等特点,实验表明零件内表面微小缺陷的检测精度达到斗μm级。  相似文献   

11.
分析了激光投线仪的工作原理及其基准误差的产生原因。基于此,提出了一种新型的激光投线仪校准系统,用于弥补传统校准方式占地面积大、精度值难以量化、人为因素影响较大等缺点。研究了一套采用平行光管角度测量与机器视觉测量结合的检测方法,通过检测激光线的直线度和垂直度来实现仪器的校准。该系统由8个采样管构成数据采集平台,从而达到多维校准的要求。采用VC++与Matlab混合编程的方式编写系统软件,通过调用动态链接库的方式使两种语言相结合。实验测试表明,该系统操作简单,效率高;与传统校准方式相比,其节约了场地长度,整个系统的占用空间控制在8 m3以内;另外,系统提高了校准精度,其水平线和铅垂线平均精度可以达到±0.2 mm/5 m,正交线精度可以达到±23"。  相似文献   

12.
点激光测头激光束方向标定   总被引:5,自引:0,他引:5  
为了使点激光测头能在任意方向上实现测量功能,提出一种逆向工程中标定激光束方向的方法,设计了一种标定面方向可调的标定块配合标定。标定过程中,让激光测头在标定面上分别沿X、Y、Z3个轴方向做等间距运动,根据进给步长与激光束长度变化量之间的关系确定激光束的方向。以三坐标测量机为平台,给出了以任意方向安置点激光测头时,测量值从传感器坐标系到基准坐标系的转换过程,并对标定算法及整个标定过程进行了详细描述。最后,通过与接触式测量进行对比实验,验证标定后点激光测头的测量效果。实验结果表明,用该方法标定的点激光测头在3σ范围内沿任意方向的测量误差为(0.0452±0.0168)mm,满足逆向工程的测量要求。  相似文献   

13.
In this paper, a new calibration and correction method is proposed to effectively improve positioning accuracy of practical 3-DOF positioning devices of miniaturized machine tools (mMTs). The method is composed of correction of the machine’s coordinate system, which is distorted due to the effects of various error components, and correction of positioning errors at arbitrary points in workspace using this corrected coordinate system. If only positioning results could be measured and assessed three-dimensionally, squareness and scale errors of the mMTs’ coordinate system can be corrected using this method without any additional device or jig. The proposed method was applied to correct the positioning errors of a serial-type 3-DOF precision positioning device used for a micro/nano-pattering system. After correction of over 40 μm × 40 μm × 40 μm of its workspace, the positioning accuracy was successfully improved by about 98%.  相似文献   

14.
液体表面张力激光快速测量法   总被引:1,自引:0,他引:1  
基于插板法测液体表面张力系数的基本原理,介绍了一种利用半导体激光器及准直光学系统输出的矩形平行光束,结合线阵CCD传感器,实现液体表面张力系数快速测量的方法。通过测量激光束两边沿在液体表面的入射角来求得表面张力系数,解决了插板法测液体表面张力系数的液面上升高度和接触角检测难题,避免了人为因素的影响。推导了矩形激光束两边沿在液体弯月面的入射角与表面张力系数的关系,以及用CCD测量激光入射角的计算公式,并进行了参数设计和误差分析。结果表明:为了提高液体表面张力系数的测量精度,在满足测量条件下,应采用尽可能大的矩形激光束宽度、激光入射角和CCD相对距离。理论分析表明,当光束宽度的测量误差为5 μm时,水的表面张力系数测量精度为1%。若将光束宽度的测量误差减小到2 μm,则水的表面张力系数理论精度可达0.5%。实验结果证明了水的表面张力系数测量精度达到1%。  相似文献   

15.
On a five-axis CNC machine tool, the pretravel errors of touch-trigger probes are severely affected by gravity and must be compensated to ensure the required measurement accuracy. The situation is more complex than that of the three-axis on-machine inspection system. This paper proposes a simple and accurate modeling and compensation method for the probe pretravel error of a five-axis on-machine inspection system. First, the pretravel error for the 5-axis CNC tool is decoupled into three parts, which are analyzed based on the probe's mechanical structure. Then, a new calibration point selection strategy is proposed to obtain the accurate reference sphere center. Finally, we carry out calibration tests to validate the proposed method. The compensation results show that the proposed compensation method for the probe pretravel error under the influence of gravity (PPEUG) can improve the accuracy considerably.  相似文献   

16.
相位延迟-电压曲线的精确标定是向列型液晶可变相位延迟器能否实现高精度偏振测量的关键。为了提高液晶相位延迟的测量精度,建立了一套精确高效的自动测量系统。首先,提出了一种新的测量方法,该方法综合了光强法、索累补偿器法以及等偏离测量技术,可以解决现有方法测量精度低或效率低的问题。在此基础上建立了测量系统,并利用Labview技术实现了系统的自动化测量,进一步缩短了测量时间。最后,对系统的测量误差、重复精度以及工作效率进行了实验验证。实验结果表明,系统延迟测量误差小于0.0575%λ,重复精度小于0.0197%λ,可在30 min内完成100个延迟采样点的自动化测量。该系统适用于可见光范围内液晶可变延迟器相位延迟-电压曲线的精确标定。  相似文献   

17.
以激光CD 光学头为基础,提出新颖的自聚焦伺服测微工作原理,并以此原理试制测微仪。利用半导体激光器作光源,CD 光学头作高精度位移检测传感器,并利用高分辨率、高动态响应的压电晶体作微位移驱动源,建立实时闭环反馈的自聚焦伺服系统,由单片机进行控制,实现自动跟踪测量。系统首先在±500μm 范围内进行寻焦搜索,实现光学头聚焦于被测表面,随后立即进入闭环聚焦伺服状态,对微位移进行检测。可获得±0.1μm 以上的测量精度,测量范围±10μm ,测量形式为非接触测量。同时,该测微仪还有成本低、体积小、使用方便等优点,是一种值得推广的新方法。  相似文献   

18.
The pose accuracy of a robot manipulator may be improved by assessing and correcting systematic errors. Both offline and online strategies can be considered. To date, there has not been a solution for the online pose error correction of parallel manipulators. Moreover, offline strategies using indoor-GPS as reference measurement system have not yet been investigated. In this paper an optimization-based kinematic calibration method and an online correction technique are proposed and implemented for a low-cost Stewart Platform. In both cases, an indoor-GPS system was used as reference measurement equipment. Performance of both strategies are compared to a kinematic calibration method based on direct parameter measurement. Pose errors are evaluated for each strategy using a robotic total station. Performance of the optimization-based calibration and the online correction technique were similar and better than the direct parameter measurement calibration. Both techniques resulted in average pose errors less or equal to 0.3 mm and 0.05°. The proposed strategies may be adapted to other similar parallel manipulators and are applicable to large sized equipment.  相似文献   

19.
流量测量是影响水轮机效率测试精度最主要的因素。大管径流量测量的方法主要采用超声波法,然而,其测量精度及误差构成尚无有效的校验方法。结合时差法超声波流量计的测流原理,推导得到流量综合误差,建立测流误差描述模型。提出一种基于流量测量理想系统来进行误差分析的量化方法,为超声波测流系统的误差分析与控制提供一种新的途径。通过测流理想系统对超声波测流精度的影响因素进行仿真研究,分析了各项参数测量误差对系统综合误差的影响,针对影响较大的主导因素提出了相关修正方法,并对系统综合误差的控制进行了分析。最后搭建实验系统进行研究,实验结果初步验证了该方法的有效性。  相似文献   

20.
三偏心蝶阀依靠蝶板和阀座密封面的充分面接触实现零泄漏的密封效果,而密封面的加工制造精度对密封性能有着至 关重要的作用。 现有的密封面测量主要依赖离线测量的方式,存在着测量基准不统一、二次装夹造成的测量误差等问题。 本文 提出了密封面精密在位测量技术以及原始点云数据处理方法。 针对被测密封面,提出波谷-聚类算法和考虑约束条件的法矢- 曲面拟合算法,得出密封面的关键参数和加工误差。 该算法较最小二乘法等算法在相对求解精度上提高了 60% 以上。 现场在 位测量的三偏心蝶阀密封面锥角与三坐标仪测量结果的相对误差仅为 0. 43% ,满足测量相对误差±0. 5% 的要求,密封面在位测 量技术的测量精度得到了有效验证,为今后高端阀门的精密测量提供了可靠的技术手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号