首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 968 毫秒
1.
为满足工程领域对耐高温树脂基透波复合材料的需求,研究石英纤维(QF)增强新型含硅改性聚芳炔(PSA)树脂基复合材料(QF/PSA)的制备方法及其性能。首先对树脂的黏度进行分析,确定了树脂在不同温度和时间下的黏度变化预测模型,适宜的树脂传递模塑工艺(Resin Transfer Molding, RTM)注胶温度在70~100℃范围;对树脂固化过程中的放热量、红外光谱和流变特性进行分析,确定了树脂的固化温度和固化过程,在250℃可以实现树脂的固化。基于上述分析进行了复合材料的高质量制备,并进一步对复合材料的微观形貌、力学性能、热膨胀性能、介电性能和耐高温性能进行分析和试验验证。材料的玻璃化转变温度(Tg)大于500℃,5%热失重温度(T5%)高达625℃,石英灯试验表明耐高温能力可达520℃/1000 s;介电常数稳定在3.1~3.2,介电损耗稳定在0.003以下;力学性能满足功能材料的使用要求。上述研究表明,该新型含硅聚芳炔树脂基透波复合材料在航空航天领域具有重要的应用价值。   相似文献   

2.
设计并合成了一种含有二腈基的硅烷偶联剂DCA(Dicyanide-containing Silane Coupling Agent),采用FTIR、1H-NMR、13C-NMR表征了其化学结构。将DCA添加到石英纤维/含硅芳炔(QF/PSA)复合材料体系中,DCA含量为QF的2.0wt%时,常温条件下改性后的QF/PSA复合材料层间剪切强度(ILSS)和弯曲强度分别提升了63.3%和28.1%;250℃时ILSS和弯曲强度的保留率分别为83.0%和81.9%;500℃时ILSS和弯曲强度的保留率分别为54.7%和60.0%。偶联剂DCA固化后的热失重5%的温度(Td5)为357.8℃,900℃时残炭率为55.7%。XPS和DSC数据表明,偶联剂DCA在QF/PSA复合材料界面形成化学桥接,其中腈基在229℃固化,炔基在245℃参与PSA的固化,在PSA与QF间形成强界面层。SEM观察表明,经偶联剂DCA改性后QF/PSA复合材料的破坏属于韧性断裂。新型偶联剂DCA可显著改善QF/PSA复合材料界面,提高其高温力学性能。   相似文献   

3.
采用氨基稀释剂(AD)和端乙炔基型聚苯并噁嗪(EB)树脂改性一种具有高力学性能的聚(间二乙炔基苯-二甲基硅烷)(PDMP)树脂。按照质量比PDMP∶EB∶AD=5∶1∶1进行共混后制备PDMP-EB-AD树脂。利用FTIR、DSC、介电分析仪(DEA)、TGA分析改性前后树脂的结构、黏度、固化过程和耐热性能变化。结果表明,AD与EB中的—NH2和—C≡CH均参与进PDMP固化过程中,共混后PDMP-EB-AD树脂固化温度升高,黏度降低,热分解温度(Td5)在N2和空气下分别为539.5℃和518.7℃,1 000℃质量保留率分别为85.1%和18.1%。利用浸渍法将PDMP-EB-AD树脂与石英纤维(QF)制备成预浸料进行模压成型,制备的QF增强PDMP-EB-AD树脂(QF/(PDMP-EB-AD))复合材料力学性能极大提高,且树脂与纤维的黏结性得到改善。常温下QF/(PDMP-EB-AD)复合材料弯曲强度和层间剪切强度(ILSS)分别为694.5 MPa和41.9 MPa,较QF/PDMP复合材料分别提高了176.6%和96.7%,250℃时弯曲强度和ILSS达到319.5 MPa和20.11 MPa。   相似文献   

4.
合成带乙炔基聚硼硅氮烷(PBSZ),并与含硅芳炔树脂(PSA)进行杂化制备聚硼硅氮烷杂化芳炔基(PBSZ/PSA)树脂,以改善芳炔基树脂的抗热氧化性能。采用FTIR、NMR和凝胶渗透色谱(GPC)对合成的PBSZ进行结构表征;采用旋转流变和DSC对PBSZ/PSA树脂的工艺性能进行研究;采用TGA、SEM和EDS对PBSZ/PSA树脂固化物的热稳定性和抗热氧化性能进行了研究。结果表明:PBSZ/PSA树脂具有良好的加工性能,树脂固化放热量较低,可在210℃下固化;树脂固化物在空气气氛1000℃下的残留率为38.0%,且其氧化后表面形成了60~80 μm厚致密的保护层,可起到良好的隔绝氧气作用;改性树脂固化物1200℃烧结物展现出优异的抗热氧化性能,烧结物1200℃氧化后表面形成约10 μm厚的致密陶瓷保护层,可有效地阻止氧气对材料的侵蚀。   相似文献   

5.
采用SiO2中空微球对含硅芳炔树脂(PSAC)进行改性,制备了SiO2/PSAC复合材料,以改善PSAC固化后质脆的缺点,提高PSAC基复合材料的力学性能,拓展PSAC在航空航天领域的应用。对SiO2/PSAC复合材料和石英纤维布增强SiO2/PSAC(QF-SiO2/PSAC)复合材料的结构与性能进行了研究,采用SEM分析SiO2/PSAC树脂浇铸体和QF-SiO2/PSAC复合材料断面微观结构,并分析SiO2的增韧机制。采用DMA和TGA分析了SiO2/PSAC复合材料耐热性能和热稳定性,虽然SiO2会导致树脂耐热性能略有下降,但其中空结构使树脂具有优异介电性能。当SiO2的添加量达2wt%时,SiO2/PSAC树脂浇铸体弯曲强度达22.3 MPa,失重5%温度为551℃,1 000℃残留率为86.5%;QF-2SiO2/PSAC复合材料的弯曲强度为298.3 MPa,弯曲模量达31.0 GPa,分别提高了27.5%、59.0%;当SiO2添加量为5wt%时,QF-5SiO2/PSAC复合材料的剪切强度提高了16.0%。   相似文献   

6.
氰酸酯(CE)树脂因具有高玻璃化转变温度、低固化收缩率和优异介电性能,常被作为耐高温或吸波纤维复合材料基体应用于航空航天领域。但由于CE树脂与碳纤维(CF)浸渍黏附性较差、固化温度高、固化物脆性较大,其复合材料制备工艺性较差且固化后易产生分层损伤,严重影响其产品质量及实际应用。本文利用聚醚砜(PES)对CE树脂进行改性,制备出浸润性良好的预浸料以适应各类干法成型复合材料制备工艺。结果表明,PES的引入能够显著提高CF/CE树脂基复合材料的力学性能和热稳定性。与CF/CE单向板相比,7.5wt%PES-CF/CE单向板的弯曲强度提高17%,层间剪切强度提高31%,冲击韧性提高39%,并且纵向热膨胀性系数从-2.07×10-8 K-1降低到-10.7×10-8 K-1,横向热膨胀系数降低20%,改性效果显著。  相似文献   

7.
制备苯乙炔全封端的含硅芳炔树脂,与含硅芳炔树脂(PSA)共混,得到满足RTM成型工艺要求的低黏度含硅芳炔树脂,合成三乙氧基乙炔基硅烷(TEOAS)并应用于改性石英纤维(QF)布,采用RTM工艺制备石英纤维增强的PSA树脂复合材料。对共混树脂的加工工艺性、耐热性能、石英纤维的表面和复合材料的性能进行研究。结果表明:共混PSA树脂不但具备较高的耐热性,而且有良好的加工工艺性能;X射线光电子能谱(XPS)分析表明QF表面接枝上乙炔基,TEOAS处理后QF与共混PSA树脂的界面黏结强度增强,复合材料的弯曲强度和层间剪切强度(ILSS)分别较未处理时提高了28.8%和25.4%。  相似文献   

8.
设计并合成了一类含酚醛结构的聚三唑(NPTA)树脂,研究了其流变性能、固化行为、耐热性等,考察了NPTA树脂作为复合材料基体的可用性。研究结果表明,NPTA树脂具有良好的可加工性能,可低温固化成型,起始固化温度低于80℃,反应活化能较低;NPTA树脂的主链结构对其流变性能、固化行为和交联反应活化能影响不大。NPTA树脂固化物的耐热性受交联结构影响,玻璃化温度可高达278℃。T700碳纤维增强NPTA树脂(T700/NPTA)复合材料的力学性能优异,常温弯曲强度大于1 590 MPa,150℃下弯曲强度保持率超过68.6%。  相似文献   

9.
通过甲基乙烯基硅氮烷与聚硅氮烷共热聚反应,将乙烯基引入先驱体聚硅氦烷,分析了甲基乙烯基硅氦烷与降硅氮烷的结构。讨论了两者共热聚的反应过程,找到了适宜的制备方法。制得了几种不同乙烯基含量的聚硅氦烷,并经熔融纺丝制得的含乙烯基的聚硅氦烷纤维。  相似文献   

10.
采用紫外光固化法在CF/SiC复合材料表面制备聚硅氮烷涂层 ,研究了含SiO2 填料的聚硅氮烷涂层制备工艺对CF/SiC复合材料抗高温氧化性能的影响。结果表明 :通过选择较低的先驱体粘度 ,SiO2 预处理和涂层的陶瓷化 ,能得到致密的涂层 ,试样在 4 0 0~ 10 0 0℃被氧化时 ,失重率小于10 %。  相似文献   

11.
采用双酚A型邻苯二甲腈预聚树脂(BAPh-P)改性聚(间二乙炔基苯-二甲基硅烷)树脂(PDMP)制备了双酚A型邻苯二甲腈/聚(间二乙炔基苯-二甲基硅烷)树脂(PBA),利用DSC、FTIR、流变分析、TGA等技术分析其固化行为、黏度以及耐热性变化。结果表明,PBA树脂固化峰值温度较PDMP升高;固化反应主要为炔基的Diels-Alder和加成反应、氰基进一步交联生成三嗪环和酞菁环等结构反应;BAPh-P的加入提升了PDMP在空气下的耐热性,PBA-1(PDMP:BAPh-P质量比为5∶1)树脂固化物在N2和空气氛围质量损失5%的温度(Td5)分别为640.6℃和591℃,1000℃质量保留率为89.0%和26.9%;随着BAPh-P质量增加,PBA树脂固化物Td5呈下降趋势,但空气中Td5均高于PDMP;石英纤维增强PBA树脂基(QF/PBA)复合材料随BAPh-P质量增加室温弯曲强度逐渐升高,高温弯曲强度先升高后降低;其中QF/PBA-2复合材料室温和400℃弯曲强度分别为363 MPa和330 MPa,较PDMP分别提升91%和214%,室温和400℃的层间剪切强度(ILSS)分别为37.5 MPa和22.2 MPa。   相似文献   

12.
以AlB2和SiC颗粒填充酚醛树脂作为基体,高硅氧纤维作为增强体,制备了高硅氧纤维/可瓷化酚醛树脂复合材料。研究了不同添加量的AlB2颗粒对高硅氧纤维/可瓷化酚醛树脂复合材料常温和1200℃裂解产物性能的影响,并分析了AlB2颗粒对其裂解产物的增强机制。结果表明:随着AlB2颗粒的添加,高硅氧纤维/可瓷化酚醛树脂复合材料常温下的弯曲强度逐渐减小,但其1200℃裂解产物的弯曲强度先增大后减小。当AlB2颗粒与酚醛树脂的质量比为12%时,裂解产物的弯曲强度提高最为显著,相比未添加AlB2颗粒的复合材料,其裂解产物的弯曲强度提高了16.4%。AlB2颗粒在1200℃有氧环境中反应生成由B2O3 、Al2O3和Al20B4O36组成的共熔体,填充了树脂基体裂解产生的孔隙,明显减少复合材料裂解产物的结构缺陷,阻止内部材料进一步氧化,提高了裂解产物的力学性能。   相似文献   

13.
从宏、微观的角度研究了碳纤维增强聚酰亚胺树脂基MT300/KH420复合材料的高温力学性能,重点揭示了MT300/KH420复合材料[0°]14和[±45°/0°/90°/+45°/0°2]s层合板在常温~500℃的弯曲性能变化规律。研究表明:MT300/KH420复合材料高温力学性能优异,[0°]14层合板在420℃的弯曲强度保持在51%以上,弯曲模量在500℃以内变化很小。[0°]14层合板在常温下断口粗糙,且贯穿厚度,表现为脆性破坏;随温度升高,树脂流动性增强,呈现出黏弹效应,破坏逐渐集中在加载点处,在500℃,部分树脂热解,纤维束脱离基体并氧化。[±45°/0°/90°/+45°/0°2]s层合板高温弯曲性能较为稳定,主要破坏为上、下表面沿45°方向开裂,并伴有层间分离,在500℃出现严重分层破坏;相比于受基体控制的层合板弯曲性能,温度对受纤维控制的层合板弯曲性能影响较小。  相似文献   

14.
针对新一代航天器长时防隔热-高气动剪切的防热需求,以杂化酚醛树脂为基体、纤维布/纤维网胎逐层针刺结构为增强体,通过溶胶-凝胶工艺,制备出一种中密度-高强度-防隔热一体化的纳米孔树脂基复合材料(IPC-90),系统研究了石英纤维(QF/IPC-90)和碳纤维(CF/IPC-90)对复合材料的微观结构、力学性能、静态隔热和烧蚀性能的影响,探讨了其在低-中-高温度下的烧蚀机制。结果表明:纤维布的引入使IPC-90具有优异的力学性能(拉伸曲强度>120 MPa,弯曲强度>90 MPa);纳米孔基体和纤维网胎的引入使IPC-90在中密度(~0.95 g/cm3)下具有较低的热导率(室温热导率依次为0.089 W/(m·K)和0.120 W/(m·K))。在1 000℃静态隔热试验中,两种材料均展现了较好的热稳定性和抗氧化性,其等效热导率分别为0.142 W/(m·K)和0.186 W/(m·K)。在2 000℃以下氧-丙烷烧蚀试验中,QF/IPC-90和CF/IPC-90的烧蚀主要由基体热解、炭化收缩引起,其1 600℃下的线烧蚀率依次为0.0208 mm/s和...  相似文献   

15.
一种耐高温加成固化型酚醛树脂作为复合材料基体的评价   总被引:7,自引:1,他引:6  
制备了烯丙基化程度可达 173%的烯丙基酚醛树脂(AN173),并与双马来酰亚胺(BMI)以 1 ∶1 的质量比进行共聚,制备了双马改性的烯丙基酚醛树脂(BMAN173) 。研究了该树脂工艺性,确定了其固化制度,考察了该树脂石英布复合材料层合板的耐热性和力学性能。实验结果表明,BMAN173 树脂具有良好的工艺性,适合于RTM、模压成型等多种成型工艺。BMAN173树脂固化物表现出良好的耐热性,其储能模量起始下降温度约为390℃, 起始热分解温度超过430℃。与传统酚醛树脂相比,该树脂的复合材料的高温力学性能优异,350℃弯曲强度和层间剪切强度保留率分别约为57%和62%;复合材料具有优异的热性能,其储能模量起始下降温度约为410℃,玻璃化转变温度超过了450℃。BMAN173树脂是耐高温复合材料的理想候选基体树脂。  相似文献   

16.
采用改性的单体反应物聚合法(MPMR)合成了一系列低黏度、耐高温异构聚酰亚胺树脂, 研究了树脂预聚物分子质量对树脂的高温流变行为、固化后热氧化稳定性的影响, 并对树脂的分子结构及其复合材料的加工工艺性能、力学性能进行了表征。结果表明: 树脂预浸液常温储存期大于两个月, 亚胺化后PI-2纯树脂最低黏度为154 Pa·s, 固化后树脂质量损失5%的温度大于560 ℃; 石英纤维/PI-2树脂基复合材料在室温和500 ℃的弯曲强度分别为917、197 MPa, 弯曲模量分别为29、22 GPa, 拉伸强度分别为760、341 MPa, 拉伸模量分别为32、31 GPa, 压缩强度分别为570、95 MPa, 层间剪切强度分别为62、10 MPa。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号