首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用非匀相沉淀法制备了纳米Cu包裹Al2O3复合粉体,并利用热压烧结制备出Al2O3/Cu复合材料.利用X-ray衍射(XRD)、热重/差式-量热扫描法(TG/DSC)、透射电镜(TEM)对复合粉体的成分、热学特性以及形貌特征进行了表征;利用扫描电镜(SEM)、显维硬度计及万能试验机测试分析了复合材料的微观结构及力学性能.结果表明,利用非匀相沉淀法可以得到Cu包裹Al2O3的纳米复合粉体,包裹层为非连续态的纳米Cu颗粒,颗粒呈球形,尺寸为10nm左右.同单相Al2O3陶瓷相比,Al2O3/Cu复合陶瓷的力学性能有显著提高,断裂韧性是单相Al2O3陶瓷的1.5倍,复合陶瓷的抗弯强度比单相Al2O3陶瓷提高,且数值离散性下降.  相似文献   

2.
以Fe2O3粉、Si粉和Al粉为原料,采用反应机械合金化/退火法制备出了Al2O3/Fe3Si纳米复合粉体。利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对复合粉体球磨以及退火过程中的固态反应过程、表面形貌进行表征。研究表明,Fe2O3-Si-Al混合粉体球磨5 h后发生反应生成Al2 O3、Fe5 Si3、Fe3 Si、FeSi,球磨20 h后生成Al2 O3/Fe3 Si,球磨20 h的粉体在900℃条件下退火1 h的组成物相未发生变化,复合粉体颗粒呈球形,其尺寸为5μm左右,分布均匀,组成相Al2O3和Fe3Si的晶粒尺寸分别为26.6 nm和28.3 nm。  相似文献   

3.
Co/Al2O3金属陶瓷材料的制备及热性能   总被引:2,自引:0,他引:2  
采用共沉淀法制备了Co/Al2O3复合粉体的前驱体,经过煅烧、原位选择还原得到平均粒径为20 nm~30 nm尺寸可控、分布均匀的Co/Al2O3纳米多相复合粉体.最后复合粉体在Ar气氛保护下,1250℃~1550℃,30 MPa保温1 h烧结得到Co/Al2O3陶瓷基复合材料.试验过程中用到的测试与表征手段有TG-DSC,XRD,TEM等,用激光微扰法(laser flash)测量样品的热扩散系数,从而计算得到复合材料的热导率,其最大值接近理论值45.29 W/m.K.金属Co的添加有效的提高了Al2O3基陶瓷材料的导热性能.  相似文献   

4.
反应等离子喷涂合成Fe-FeAl2O4-Al2O3复合涂层的研究   总被引:1,自引:0,他引:1  
利用机械团聚法制备了适合等离子喷涂的Fe2O3/Al复合粉体,将此粉体送入等离子焰流,通过复合粉的自反应制备含有Fe、Al2O3和FeAl2O4的复合陶瓷涂层。利用扫描电镜(SEM)、X射线衍射仪(XRD)和透射电镜(TEM)等检测手段对反应等离子制备的复合涂层进行了研究。结果表明:涂层具有以层状陶瓷为骨架,球形金属为弥散相的组织,反应生成涂层的过程是分步进行的,由于反应生成的部分纳米颗粒以及金属的存在,使得涂层的耐磨性和韧性比普通Al2O3涂层有了较大的提高,尤其在高载荷作用下,复合涂层的耐磨性比普通Al2O3提高近两倍。  相似文献   

5.
以Fe3O4粉和Al粉为原料,采用机械球磨诱发化学反应制备了Fe3Al-Al2O3纳米晶复合粉体。利用X射线衍射仪(XRD)和附带能量色散谱仪(EDS)的扫描电子显微镜(SEM)对复合粉体球磨过程中的固态反应过程、表面形貌进行表征。结果表明,球磨过程中,30 min后混合粉末中开始出现少量的Al2O3颗粒,1 h后大部分Fe3O4被还原,形成α-Al2O3、θ-Al2O3、Fe(Al)固溶体和FeO,另有Al剩余。球磨3 h后,大部分的θ-Al2O3转变为α-Al2O3,Fe(Al)固溶体、FeO和剩余的Al粉在机械力的作用下反应形成FeAl化合物和Fe.911O。继续球磨至5 h后,FeAl化合物和Fe.911O相互反应而完全消耗,得到Fe3Al-Al2O3复合粉体。机械力诱发的Fe3O4和Al之间的反应属于突发型反应,诱发反应的临界球磨时间约为50 min。  相似文献   

6.
采用非均相沉淀一热还原工艺分别制备了纳米Fe、Co、Ni及其合金包覆Al2O3微球粉体,并利用SEM、XRD对热还原产物的成分、结构及形貌进行了表征,通过VSM对FeNi包覆Al2o3复合微球的磁滞行为进行了检测.结果表明非均相沉淀一热还原工艺可以制备单分散或连续致密分布的金属包覆型复合微球,包覆层金属颗粒分布均匀、颗粒细小,一次颗粒粒径小于100 nm.包覆层前驱体经H2热还原由无定型结构分别转变成了纯金属相或固溶体合金.FeNi包覆Al2O3微球的饱和磁化强度与纯FeNi相比未发生变化,但矫顽力大幅提高,增强了磁滞损耗,有望成为良好的电磁波吸收剂.  相似文献   

7.
采用化学共沉淀法制备纳米级氧化铟锡复合粉体前驱物,煅烧得到纳米级氧化铟锡(ITO)复合粉体,用TG-DTA,XRD,TEM,ICP-AES,XRF和BET研究了纳米级ITO复合粉体的性能.前驱物铟锡氢氧化物的分解温度为291.5℃,300℃下烧结即可得到立方结构的ITO结晶粉体,Sn嵌入到In2O3晶格中,形成单相的ITO固溶体颗粒.随着温度的升高,ITO固溶体颗粒结晶更完全,晶粒长大.前驱物铟锡氢氧化物分别在600℃,800℃和900℃煅烧4 h得到粒度均匀、分散性好、粒径为20 nm~30 nm的类球形ITO复合粉体.600℃煅烧得到的ITO复合粉体的纯度为99.995%,配比为In2O3:90.045%,SnO2:9.955%,比表面积为50.88 m2/g.该粉体烧结活性高,将该粉体用简单的烧结工艺在1000℃烧制的ITO靶材相对理论密度达到99.25%.  相似文献   

8.
高能反应球磨法制备Fe_3Al/α-Al_2O_3纳米复合粉体   总被引:1,自引:0,他引:1  
以Fe、Al和Fe2O3粉体为原料,采用高能球磨法制备了Fe3Al/α-Al2O3纳米复合粉体,采用X射线衍射仪研究了球磨时间对粉体物相的变化规律。结果表明:以Fe、Al和Fe2O3粉体为原始材料,高能球磨250min可制备Fe3Al/α-Al2O3纳米复合粉体;在高能反应球磨过程中,Fe2O3、Al和Fe之间的反应分为3步,分别是:2Al+Fe2O3=Al2O3+2Fe、6Al+Fe=Al6Fe和Al6Fe+12Fe=Fe3Al。  相似文献   

9.
燃烧合成TiB2-Al2O3陶瓷复合粉体及其表征   总被引:3,自引:0,他引:3  
采用TiB2-Al2O3-Al还原体系,通过燃烧还原技术制备了TiB2-Al2O3陶瓷复合粉体。利用XRD,XPS和SEM技术对合成粉体的相组成、化学组成及宏观组织结构进行了分析。复合粉的显微结构由TEM和HREM进行表征。结果表明,用燃烧合成法在420℃~700℃之间可制得TiB2-Al2O3陶瓷复合粉体。该粉体仅由TiB2和Al2O3两相组成,颗粒分布较均匀。由于TiB2与Al2O3间形成了结合良好的界面,颗粒间彼此能有效地抑制晶粒长大,从而使TlB2-Al2O3陶瓷复合粉的粒径减小,颗粒平均粒度在3μm~5μm之间。  相似文献   

10.
采用溶胶-凝胶法制备了Al2O3-ZrO2(3Y)-Spinel纳米复合粉体,其颗粒大小为20-30nm,粒度分布均匀,无硬团聚。采用真空热压烧结工艺制备了纳米复相陶瓷,结果表明:由于纳米复合粉体中的第二相阻止了基体Al2O3的致密化,纳米复合粉体的烧结温度较普通微米粉体相比并没有大幅度降低,其合适的烧结温度为1450~1500℃。烧结体的超塑性压缩试验表明:在1500℃材料表现出良好的超塑变形能力,变形抗力小于30MPa。在整个压缩变形过程中,材料没有出现明显的应变软化,显示出与超塑性拉伸变形截然不同的特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号