首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 763 毫秒
1.
To examine variations in the transparent conducting properties after annealing at high temperatures, 300-nm thick Sb-doped Sn1 − xHfxO2 (x = 0.00-0.10) films were deposited onto silica glass substrates by the RF sputtering method and annealed in air up to 1000 °C at 200 °C increments. After annealing, all the Sb-doped SnO2 films were transparent and electrically conductive, but large cracks, which decreased the electrical conductivity, were generated in several films due to crystallization or the thermal expansion difference between the film and substrate. Only the film deposited at room temperature in an Ar and O2 mixed atmosphere did not crack after annealing, and its electrical conductivity exceeded 100 S cm− 1 even after annealing at 1000 °C in air. Hf-doping blue shifted the fundamental absorption edges in the UV region in the Sb-doped Sn1 − xHfxO2 films. Additionally, the optical transmission at 310 nm, T310, increased as the Hf concentration increased, whereas the electrical conductivity was inversely proportional to the Hf concentration. On the other hand, thinner films (150-nm thick) with x = 0.00 showed both a high electrical conductivity over 100 S cm− 1 and a high transparency T310 = 65% after high temperature annealing.  相似文献   

2.
Ferroelectric Ba(Sn0.15Ti0.85)O3 (BTS) thin films were deposited on LaNiO3-coated silicon substrates via a sol-gel process. Films showed a strong (1 0 0) preferred orientation depending upon annealing temperature and concentration of the precursor solution. The dependence of dielectric and ferroelectric properties on film orientation has been studied. The leakage current density of thin films at 100 kV/cm was 7 × 10−7 A/cm2 and 5 × 10−5 A/cm2 and their capacitor tunability was 54 and 25% at an applied field of 200 kV/cm (measurement frequency of 1 MHz) for the thin films deposited with 0.1 and 0.4 M spin-on solution, respectively. This work clearly reveals the highly promising potential of BTS compared with BST films for application in tunable microwave devices.  相似文献   

3.
A.F. Qasrawi 《Thin solid films》2011,519(11):3768-3772
Polycrystalline AgIn5S8 thin films are obtained by the thermal evaporation of AgIn5S8 crystals onto ultrasonically cleaned glass substrates under a pressure of ~ 1.3 × 10−3 Pa. The temperature dependence of the optical band gap and photoconductivity of these films was studied in the temperature regions of 300-450 K and 40-300 K, respectively. The heat treatment effect at annealing temperatures of 350, 450 and 550 K on the temperature dependent photoconductivity is also investigated. The absorption coefficient, which was studied in the incidence photon energy range of 1.65-2.55 eV, increased with increasing temperature. Consistently, the absorption edge shifts to lower energy values as temperature increases. The fundamental absorption edge which corresponds to a direct allowed transition energy band gap of 1.78 eV exhibited a temperature coefficient of −3.56 × 10−4 eV/K. The 0 K energy band gap is estimated as 1.89 eV. AgIn5S8 films are observed to be photoconductive. The highest and most stable temperature invariant photocurrent was obtained at an annealing temperature of 550 K. The photoconductivity kinetics was attributed to the structural modifications caused by annealing and due to the trapping-recombination centers' exchange.  相似文献   

4.
Cheng-Hsing Hsu 《Thin solid films》2009,517(17):5061-1132
Zirconium tin titanium oxide doped 1 wt.% ZnO thin films on n-type Si substrate were deposited by rf magnetron sputtering at a fixed rf power of 300 W, a substrate temperature of 450 °C, a deposition pressure of 5 mTorr and an Ar/O2 ratio of 100/0 with various annealing temperatures and annealing times. Electrical properties and microstructures of 1 wt.% ZnO-doped (Zr0.8Sn0.2)TiO4 thin films prepared by rf magnetron sputtering on n-type Si(100) substrates at different annealing temperatures (500 °C-700 °C) and annealing times (2 h-6 h) have been investigated. The structural and morphological characteristics analyzed by X-ray diffraction (XRD) and atomic force microscope (AFM) were sensitive to the treatment conditions such as annealing temperature and annealing time. At an annealing temperature of 600 °C and an annealing time of 6 h, the ZnO-doped (Zr0.8Sn0.2)TiO4 thin films possess a dielectric constant of 46 (at f = 10 MHz), a dissipation factor of 0.059 (at f = 10 MHz), and a low leakage current density of 3.8 × 10− 9 A/cm2 at an electrical field of 1 kV/cm.  相似文献   

5.
Thin films of crystalline HgCr2S4 have been deposited on glass substrates at low temperature as low as 65 °C using a chemical bath deposition method. Typical thickness of the deposited HgCr2S4 thin films was 264 nm.The films were composed of closely packed irregular grains of 165-175 nm in diameter. The X-ray diffraction analysis and the selected area electron diffraction analysis revealed the deposited thin films were polycrystalline with highly (2 2 0) preferential orientation. The films exhibit a pure faint black. Their direct band gap energy was 2.39 eV with room temperature electrical resistivity of the order of 10−3 Ω cm.  相似文献   

6.
Highly conducting (σ ∼ 2.6 × 103 Ω−1 cm−1) In4Sn3O12 films have been deposited using pulsed laser deposition (PLD) on glass and quartz substrates held at temperatures between 350 and 550 °C under chamber pressures of between 2.5 and 15 mTorr O2. The crystallinity and the surface roughness of the films were found to increase with increasing substrate temperature. Electron concentrations of the order of 5 × 1020 cm−3 and mobilities as high as 30 cm2 V−1 s−1 were determined from Hall effect measurements performed on the films. Fitting of the transmission spectral profiles in the ultra-violet–visible spectrum has allowed the determination of the refractive index and extinction coefficient for the films. A red-shift in the frequency of plasmon resonance is observed with both increasing substrate temperature and oxygen pressure. Effective masses have been derived from the plasma frequencies and have been found to increase with carrier concentration indicating a non-parabolic conduction band in the material In4Sn3O12. The optical band-gap has been determined as 3.8 eV from the analysis of the absorption edge in the UV. These results highlight the potential of these films as lower In-content functional transparent conducting materials.  相似文献   

7.
Xueyan Tian  Yinzhu Li 《Thin solid films》2009,517(20):5855-5857
Lead zirconate titanate (Pb(Zr0.52Ti0.48)O3, PZT) thin films fabricated by magnetron sputtering technique on the Pt/Ti/SiO2/Si substrates at room temperature, were annealed by means of CO2 laser with resulting average substrate temperature below 500 °C. The crystal structure, surface morphology and pyroelectric properties of the PZT films before and after annealing were investigated by X-ray diffraction, atomic force microscopy, and pyroelectric measurements. The results show that the annealed PZT thin film with a laser energy density of 490 W/cm2 for 25 s has a typical perovskite phase, uniform crystalline particles with a size of about 90 nm, and a high pyroelectric coefficient with 1.15 × 10− 8 Ccm− 2 K− 1.  相似文献   

8.
Thin films of CaWO4 and SrWO4 were prepared on glass substrates by spray pyrolysis. The effects of preparation conditions and monovalent, bivalent and trivalent cation doping on cathodoluminescence (CL) properties of the films were studied. Polycrystalline CaWO4 and SrWO4 films formed a scheelite structure after being annealed above 300°C. They exhibited analogous cathodoluminescence consisting of a blue emission band at 447 nm and a blue-green emission band at 487 nm. The blue and blue-green emission intensities increased with substrate and annealing temperature. Annealing atmosphere and doping with Ag+, Pb2+ and La3+ did not influence the characteristics of the blue and blue-green emissions, whereas Eu3+ did. The results indicated both the blue and blue-green emissions originated from the WO42− molecular complex. The luminance and efficiency for CaWO4 film were 150 cd/m2 and 0.7 lm/W at 5 kV and 57 μA/cm2.  相似文献   

9.
We propose and demonstrate Metal-Oxide-Semiconductor structures comprising Al2O3-TiO2 nanolaminate and AlTiO films. Composition, structural and electrical characteristics were studied in detail and compared to TiO2 thin film-based structures. All dielectric films were evaporated using an electron beam gun (EBG) system on unheated p-Si substrate without adding O2. MOS structures were investigated in detail before and after annealing at up to 950 °C in O2 and N2 + O2 environments. The nanolaminate films remain in an amorphous state after annealing at 950 °C. The smallest quantum mechanical corrected equivalent oxide thickness measured was ∼1.37 nm. A large reduction of the leakage current density to 1.8 × 10− 8 A/cm2 at an electric field of 2 MV/cm was achieved by the annealing process.  相似文献   

10.
We have investigated the optical and electrical characteristics of antimony (Sb)-doped tin oxide (SnO2) films with modified structures by thermal annealing as a transparent conductive electrode. The structural properties were analyzed from the relative void % by spectroscopic ellipsometry as well as the scanning electron microscopy images and X-ray diffraction patterns. As the annealing temperature was raised, Sb-doped SnO2 films exhibited a slightly enhanced crystallinity with the increase of the grain size from 17.1 nm at 500 °C to 34.3 nm at 700 °C. Furthermore, the refractive index and extinction coefficient gradually decreased due to the increase in the relative void % within the film during the annealing. The resistivity decreased to 8.2 × 10−3 Ω cm at 500 °C, but it increased rapidly at 700 °C. After thermal annealing, the optical transmittance was significantly increased. For photovoltaic applications, the photonic flux density and the figure of merit over the entire solar spectrum were obtained, indicating the highest values of 5.4 × 1014 cm−2 s−1 nm−1 at 1.85 eV after annealing at 700 °C and 340.1 μA cm−2 Ω−1 at 500 °C, respectively.  相似文献   

11.
Lead-free polycrystalline BiFeO3 (BFO) thin films were developed using a chemical solution deposition method to deposit the films and the multi-mode 2.45 GHz microwave furnace to optimize the annealing condition of the films. Phase-pure BFO films were obtained at 500 °C-600 °C for 1-5 min with a heating rate of 10 °C/min. The film by microwave annealing (MW) at 550 °C for 5 min exhibited a (012)-preferred orientation with a dense morphology of grain size ~ 294 nm. Its dielectric constant of 96.2, low leakage current density of 2.466 × 10− 6 A/cm2, polarization (2Pr) and coercive field (2Ec) of 0.931 μC/cm2 and 57.37 kV/cm, respectively, were improved compared to those by conventional annealing (CA) at the same annealing conditions.  相似文献   

12.
N. Khemiri  M. Kanzari 《Thin solid films》2011,519(21):7201-7206
CuInS2, CuIn3S5, CuIn5S8 and CuIn7S11 compounds were synthesized by the horizontal Bridgman method using high-purity copper, indium and sulphur elements. Crushed powders of these ingots were used as raw materials for the vacuum thermal evaporation. So, CuIn2n + 1S3n + 2 (n = 0, 1, 2, and 3) thin films were deposited by single source vacuum thermal evaporation onto glass substrates heated at 150 °C. The structural, compositional, morphological, electrical and optical properties of the deposited films were studied using X-ray diffraction (XRD), energy dispersive X-ray, atomic force microscopy and optical measurement techniques. XRD results revealed that all the films are polycrystalline. However, CuInS2 and CuIn3S5 films had a chalcopyrite structure with preferred orientation along 112 while CuIn5S8 and CuIn7S11 films exhibit a spinel structure with preferred orientation along 311. The absorption coefficients of the all CuIn2n + 1S3n + 2 films are in the range of 10−4 and 10−5 cm−1. The direct optical band gaps of CuIn2n + 1S3n + 2 layers are found to be 1.56, 1.78, 1.75 and 1.30 eV for n = 0, 1, 2, and 3, respectively. CuIn3S5 and CuIn5S8 films are p type with electrical resistivities of 4 and 12 Ω cm whereas CuInS2 and CuIn7S11 are highly compensated with resistivities of 1470 and 1176 Ω cm, respectively.  相似文献   

13.
Smooth and compact thin films of amorphous and crystalline antimony sulfide (Sb2S3) were prepared by radio frequency sputtering of an Sb2S3 target. As-deposited films are amorphous. Polycrystalline antimony sulfide films composed of ∼ 500 nm grains are obtained by annealing the as-deposited films at 400 °C in sulfur vapors. Both amorphous and crystalline antimony sulfide have strong absorption coefficients of 1.8 × 105 cm− 1 at 450 nm and 7.5 × 104 cm− 1 at 550 nm, and have direct bandgaps with band energies of 2.24 eV and 1.73 eV, respectively. These results suggest the potential use of both amorphous and crystalline antimony sulfide films in various solid state devices.  相似文献   

14.
X.K. Duan  Y.Z. Jiang 《Thin solid films》2011,519(10):3007-3010
(Bi1 − xSnx)2Te2.7Se0.3 thermoelectric thin films with thickness of 800 nm have been deposited on glass substrates by flash evaporation method at 473 K. The structures, morphology of the thin films were analyzed by X-ray diffraction and field emission scanning electron microscopy respectively. Effects of Sn-doping concentration on thermoelectric properties of the annealed thin films were investigated by room-temperature measurement of Seebeck coefficient and electrical resistivity. The thermoelectric power factor was enhanced to 12.8 μW/cmK2 (x = 0.003). From x = 0.004 to 0.01 Sn doping concentration, the Seebeck coefficients are positive and show p-type conduction. The Seebeck coefficient and electrical resistivity gradually decrease with increasing Sn doping concentration.  相似文献   

15.
Thin films of nanocrystalline SnS2 on glass substrates were prepared from solution by dip coating and then sulfurized in H2S (H2S:Ar = 1:10) atmosphere. The films had an average thickness of 60 nm and were characterized by X-ray diffraction studies, scanning electron microscopy, EDAX, transmission electron microscopy, UV-vis spectroscopy, and Raman spectroscopy. The influence of annealing temperature (150-300 °C) on the crystallinity and particle size was studied. The effect of CTAB as a capping agent has been tested. X-ray diffraction analysis revealed the polycrystalline nature of the films with a preferential orientation along the c-axis. Optical transmission spectra indicated a marked blue shift of the absorption edge due to quantum confinement and optical band gap was found to vary from 3.5 to 3.0 eV with annealing temperature. Raman studies indicated a prominent broad peak at ∼314 cm−1, which confirmed the presence of nanocrystalline SnS2 phase.  相似文献   

16.
A novel Bi-doped P2O5-B2O3-Al2O3 glass was investigated, and strong broadband NIR (near infrared) luminescence was observed when the sample was excited by 445 nm, 532 nm, 808 nm and 980 nm lasers, respectively. The max FWHM with 312 nm, the lifetime with 580 μs and the σemτ product with 5.3 × 10− 24 cm2 s were obtained which indicates that this glass is a promising material for broadband optical amplifier and tunable laser. The effect of the introduction of B2O3 on the glass structure and Bi-ions illuminant mechanism were discussed and analyzed. It is suggested that the introduction of B2O3 makes the glass structure closer, and the broadband NIR emission derives from Bi0:2D3/2 → 4S3/2 and Bi+:3P1 → 3P0 transitions.  相似文献   

17.
Solar cells with a short-circuit current density (Jsc) of 6 mA/cm2, an open circuit voltage (Voc) of 280 mV and a conversion efficiency of 0.5% under a 1000 W/m2 solar radiation were prepared by sequential chemical deposition of Bi2S2 (160 nm) and PbS (400 nm) thin films. The optical band gap (Eg) of Bi2S3 (160 nm) decreased from 1.67 to 1.61 eV upon heating the as-deposited film at 250 °C in air for 15 min to make it crystalline, but also reduced its thickness to 100 nm. Photoconductivity of this film is 0.003 (Ω cm)− 1. The Eg of PbS film (200 nm) deposited at 25 °C (24 h) is 0.57 eV, and is 0.49 eV for the film deposited at 40 °C. The electrical conductivity of the latter is 0.48 (Ω cm)− 1. The photo-generated current density for a Bi2S3(100 nm)/PbS(300 nm) absorber stack is above 40 mA/cm2 under AM 1.5 G (1000 W/m2) solar radiation. However, the optical losses in the cell structure reduces the Jsc. Spectral sensitivity of the external quantum efficiency of the cell establishes the contribution of Bi2S3 and PbS to Jsc. The energy level diagram of the cell structure suggests a built-in potential of 470 mV for the present case. Six series-connected cells gave the Voc of 1.4 V and Jsc of 5 mA/cm2.  相似文献   

18.
In this study, CuFeO2 thin films were deposited onto quartz substrates using a sol-gel and a two-step annealing process. The sol-gel-derived films were annealed at 500 °C for 1 h in air and then annealed at 600 to 800 °C for 2 h in N2. X-ray diffraction patterns showed that the annealed sol-gel-derived films were CuO and CuFe2O4 phases in air annealing. When the films were annealed at 600 °C in N2, an additional CuFeO2 phase was detected. As the annealing temperature increased above 650 °C in N2, a single CuFeO2 phase was obtained. The binding energies of Cu-2p3/2, Fe-2p3/2, and O-1s were 932.5 ± 0.1 eV, 710.3 ± 0.2 eV and 530.0 ± 0.1 eV for CuFeO2 thin films. The chemical composition of CuFeO2 thin films was close to its stoichiometry, which was determined by X-ray photoelectron spectroscopy. Thermodynamic calculations can explain the formation of the CuFeO2 phase in this study. The optical bandgap of the CuFeO2 thin films was 3.05 eV, which is invariant with the annealing temperature in N2. The p-type characteristics of CuFeO2 thin films were confirmed by positive Hall coefficients and Seebeck coefficients. The electrical conductivities of CuFeO2 thin films were 0.28 S cm− 1 and 0.36 S cm− 1 during annealing at 650 °C and 700 °C, respectively, in N2. The corresponding carrier concentrations were 1.2 × 1018 cm− 3 (650 °C) and 5.3 × 1018 cm− 3 (700 °C). The activation energies for hole conduction were 140 meV (650 °C) and 110 meV (700 °C). These results demonstrate that sol-gel processing is a feasible preparation method for delafossite CuFeO2 thin films.  相似文献   

19.
Single crystals of K3Rb3Zn4Sn3Se13 were synthesized by solvothermal method. The building block in this structure is a [Zn4Sn3Se16]12− cluster which consists of four ZnSe4 and three SnSe4 tetrahedra connected through corner-sharing of Se atoms. The 3D network contains intersecting channels running parallel to the crystallographic [2 1 1], [1-1-1] and [12-1] directions. The disordered K+ and Rb+ cations reside in these channels. Ion exchange of Cs+ with disordered Rb+/K+ ions in the structure showed a partial replacement of 15.8%. Optical diffuse reflectance experiments were carried out and gave a sharp absorption edge at 2.6 eV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号