首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 328 毫秒
1.
以Span-20、Tween-20为石蜡复配乳化剂,采用反相乳化(EIP)法,复合乳化剂HLB值为10.5、浓度为8%,选择HMHEC/锂皂石为助乳化剂,制得稳定的水包油纳米石蜡乳液。所得纳米石蜡乳液滴为负电性,平均粒径在96~126 nm之间,具有好的长期稳定性,乳液粒径在5个月内无显著变化,奥氏熟化作用较弱,无机盐对其长期稳定性无影响。  相似文献   

2.
对塔西南超深井钻井过程中出现的微纳米裂缝与孔隙渗漏的问题进行分析,发现现有钾基聚磺钻井液中的封堵剂不能有效封堵微纳米裂缝与孔隙。为提高封堵粒径级配,在室内制备一种石蜡微乳液,通过粒径比较法得出了最佳制备方案。方案表明制备的最佳比例为“S+A”∶石蜡=9∶1,最佳搅拌速度为1400 r/min,最佳温度为120 ℃。制备得到的石蜡微乳液D50粒径在2.9 μm左右,单分散颗粒尺寸在200~300 nm左右,表面张力在45.0~47.5 mN/m范围内,稳定时间长达30 d。采用石蜡微乳液对塔西南区块钾聚磺水基钻井液体系进行优化,从优化结果可以看出,石蜡微乳液的配伍性好;优化后钻井液体系表观黏度降低3.5 mPa·s;钻井液的滤失量减小3.5 mL;泥饼厚度减小1 mm,增强了钻井液的滤失造壁性能。采用压力传导法对石蜡微乳液的封堵性能进行评价,结果表明石蜡微乳液可以提高封堵承压能力,石蜡微乳液优化钻井液对克孜洛依组致密砂岩的封堵率为58.4%,具有较好的微纳米裂缝孔隙封堵能力。   相似文献   

3.
钻井液纳米润滑乳化剂的实验研究   总被引:1,自引:0,他引:1  
根据纳米乳液的形成机理.采用微乳法研制出一种非离子纳米润滑乳化剂,并对其性能进行了评价.结果表明,该复配型纳米润滑乳化剂的推荐加量为0.5%~2.0%,对原油的乳化率高,具有良好的稳定性、润滑性和抗温性能;在钻井液中的配伍性良好,具有一定的降滤失和降黏作用;通过激光粒度测定仪分析证明,用该乳化剂配制的原油乳状液珠平均粒径为67 nm,达到纳米级,添加纳米润滑乳化剂的钻井液的粒径分布趋于集中,具有更好的稳定性.该纳米润滑乳化剂在中原油田特殊工艺井中的使用效果明显,具有良好的应用前景.  相似文献   

4.
以58#石蜡为原料,采用司潘-60和吐温-60为主乳化剂、油酸钾和吐温-80为助乳化剂制备了一种高固含量石蜡纳米乳液,利用单因素法研究了配方组成、乳化时间、乳化温度和搅拌转速对乳液粒径大小及其分布、乳液流动性和黏度的影响,并确定了适宜的制备条件。实验结果表明,高固含量石蜡纳米乳液的适宜制备条件为58#石蜡、乳化水、司潘-60、吐温-60、油酸钾和吐温-80的质量比为23.0∶30.0∶2.8∶4.2∶0.6∶1.2,乳化时间为10min,乳化温度为100℃,搅拌转速为1400r/min。在该条件下制备的高固含量石蜡纳米乳液的固含量和平均粒径分别为53.21%(w)和0.247μm,且稳定性高、分散性好、流动性强。  相似文献   

5.
石蜡微乳液是由58#石蜡、离子和非离子表面活性剂制备而成。影响石蜡微乳液粒径的因素有乳化剂用量、乳化温度、乳化时间、搅拌速度、pH值和助表面活性剂。实验结果表明:乳化温度在75-85℃时对石蜡微乳液的粒径影响不大;而其它因素对石蜡微乳液的粒径影响较大。制备石蜡微乳液的最佳工艺条件为:w(乳化剂)=6%,乳化温度为80℃,乳化时间为40min,pH为8,搅拌速度约600r/min,助表面活性剂为正戊醇。在此条件下,可以制备粒径为97nm、半透明的石蜡微乳液。  相似文献   

6.
为解决普通纳米石蜡乳液低温下易析出石蜡并凝结成固态,导致钻井现场无法正常应用的问题,选用液体石蜡作内相,多元醇水溶液为外相,在复合乳化剂的作用下,通过合适的乳化分散工艺(相转变组分法),制备了一种防冻型纳米乳化石蜡PF-EPF。通过室内实验,研究了水相、表面活性剂的HLB值、含量、乳化温度和油相含量等因素对PF-EPF性能的影响,得到了适宜的制备工艺,即多元醇溶液质量分数为50%~70%,体系的HLB值在10左右,油剂比为1:1,乳化温度为80℃,体系的油相含量在30%左右,在此条件下制备的乳化石蜡PF-EPF平均粒径在160 nm左右,凝固点最低达到-30℃,防冻能力突出,并具有良好的稳定性。加入2% PF-EPF以后,海水基浆的PPT滤失量(砂盘孔径为5 μm)从18.8 mL减少到10 mL左右,加入3% PE-EPF后使PEC钻井液的PPT滤失量从17.2 mL减少到6.4 mL。评价实验表明, PE-EPF能够明显提高钻井液的封堵性,起到防止井塌、提高钻速和保护油气层的作用。该剂在渤海区域CFD6-4-6D井也取得了很好的应用效果,应用前景广阔。   相似文献   

7.
《石油化工》2019,48(11):1134
采用非离子型乳化剂吐温-60、司潘-80与阴离子型乳化剂十二烷基苯磺酸钠复配,制备了造纸用高稳定性石蜡亚微乳液,利用单因素法考察了配方组成、乳化时间、乳化温度和搅拌转速对乳液粒径大小及分布、分散性和稳定性等的影响。确定了乳化水、58#石蜡、司潘-80、吐温-60和十二烷基苯磺酸钠的最佳用量分别为乳液质量的69.9%,21.0%,3.6%,5.4%,0.1%,得到了最佳制备条件为乳化时间20 min、乳化温度95℃、搅拌转速1 300 r/min,在该条件下制备的石蜡亚微乳液稳定性高,且分散性、固含量等满足造纸用石蜡乳液的基本要求,可用于造纸工业。  相似文献   

8.
采用机械搅拌与均质机联用的方法,以58#全精炼切片石蜡为原料进行制备石蜡乳液的实验,考察乳化剂、乳化剂用量、乳化温度、乳化水用量和乳化时间等因素对石蜡乳化效果的影响。实验结果表明,复配乳化剂比单一乳化剂的乳化效果好;对石蜡乳化效果影响大小的顺序是乳化剂用量>乳化温度>乳化水用量>乳化时间;制备石蜡乳液的最佳条件为:m(Span-80)∶m(Tween-80)=2∶3、乳化剂用量9%(w),乳化温度80℃,乳化时间40 min,乳化水用量74%(w),搅拌转速1 000 r/min,在此条件下所得石蜡乳液的平均粒径为1.36μm。  相似文献   

9.
为提高非离子型石蜡乳液的覆盖性,先采用非离子型乳化剂吐温-60、司潘-60为主乳化剂乳化58#石蜡制备非离子型石蜡乳液,然后添加助乳化剂十六烷基三甲基溴化铵制备阳-非离子型石蜡乳液。利用单因素法考察了配方组成、乳化时间、乳化温度和搅拌速度对乳液的粒径大小及分布、分散性和稳定性等的影响,确定了水、58#石蜡、吐温-60、司潘-60、十六烷基三甲基溴化铵的最佳用量分别为乳液质量的69.8%,20.9%,6.3%,2.7%,0.3%,得到了最佳制备条件:乳化时间为20 min,乳化温度为95℃,搅拌速度为1300 r/min。该条件下制得的阳-非离子型石蜡乳液的平均粒径0.199μm、固含量31.86%等满足造纸用石蜡乳液的基本要求,可用于造纸工业。  相似文献   

10.
石蜡纳米乳液的性能影响因素及低能乳化法制备   总被引:3,自引:0,他引:3  
目前所生产的石蜡纳米乳液粒度分布较宽,稳定性较差,能耗较高。因此,从节能和稳定性方面出发,研究低能条件下石蜡纳米乳液的制备具有现实意义。通过室内试验研究了表面活性剂的HLB值、表面活性剂含量、乳化温度、白油与石蜡质量比、无机盐加量等因素对石蜡纳米乳液性能的影响。根据石蜡纳米乳液性能影响因素研究结果,结合低能乳化法的特点,兼顾成本因素,确定了制备石蜡纳米乳液时的表面活性剂为非离子型表面活性剂A1和A2,最佳乳化条件为:白油、石蜡、表面活性剂和水的质量比为2∶2∶1∶5,乳化温度75 ℃,乳化时间30 min;给出了具体的石蜡纳米乳液低能乳化制备方法。对用低能乳化法制备的石蜡纳米乳液进行了性能评价,结果表明,采用低能乳化法制备的石蜡纳米乳液具有较好的抑制性、优异的润滑性、良好的保护油层效果,及对钻井液性能影响很小等优点。   相似文献   

11.
The mesoporous molecular sieve catalyst Co/SBA-15 was synthesized by two steps synthesis method, based on which oxidized wax was prepared. The emulsification of oxidized wax was carried out by employing Span-80, Tween-80, and stearic acid as compound emulsifier. The results showed that when the mass ratio of Span-80, Tween-80, and stearic acid was 5.5:3.6:0.9, emulsifying temperature was 75°C, emulsifying time was 55 min, emulsifier amount was 7.3%, and water consumption was 69.96%. The emulsion performance of oxidized wax was improved greatly compared with ordinary paraffins.  相似文献   

12.
以丙烯酰胺(AM)和2-丙烯酰胺-2-甲基丙磺酸(AMPS)为原料,用反相乳液聚合法合成了凝胶微球(OBMG)。并采用红外光谱(FTIR)、核磁共振氢谱(1HNMR)对其结构进行了表征。详细考察了反相乳液体系中复合乳化剂的HLB值、油水比、单体物质的量比、单体总浓度、交联剂浓度对封堵效果的影响。结果表明,合成OBMG的最佳条件为:复合乳化剂的HLB值为5.0、油水比为0.64∶1、交联剂浓度为单体总质量的0.07%,单体总浓度为30%。在此条件下产物的单位压差漏失量降低率最大为80%。同时研究了凝胶微球加量对油基钻井液封堵性、电稳定性和表观黏度的影响。实验结果表明,凝胶微球加量为2%~3%时,钻井液的封堵效果最佳,说明其有利于提高乳液的稳定性。在油基钻井液中,OBMG封堵效果优于改性沥青和树脂微球。  相似文献   

13.
以丙烯酰胺(AM)和2-丙烯酰胺-2-甲基丙磺酸(AMPS)为原料,用反相乳液聚合法合成了凝胶微球(OBMG)。并采用红外光谱(FTIR)、核磁共振氢谱(1HNMR)对其结构进行了表征。详细考察了反相乳液体系中复合乳化剂的HLB值、油水比、单体物质的量比、单体总浓度、交联剂浓度对封堵效果的影响。结果表明,合成OBMG的最佳条件为:复合乳化剂的HLB值为5.0、油水比为0.64∶1、交联剂浓度为单体总质量的0.07%,单体总浓度为30%。在此条件下产物的单位压差漏失量降低率最大为80%。同时研究了凝胶微球加量对油基钻井液封堵性、电稳定性和表观黏度的影响。实验结果表明,凝胶微球加量为2%~3%时,钻井液的封堵效果最佳,说明其有利于提高乳液的稳定性。在油基钻井液中,OBMG封堵效果优于改性沥青和树脂微球。   相似文献   

14.
为解决苏里格气田致密气藏二开结构水平井钻井施工中地层塌漏矛盾突出、降摩减阻及井眼净化困难等技术难题,基于地质特性和泥岩坍塌机理分析,建立摩阻扭矩计算模型,对比变更井身结构摩阻及扭矩变化规律。通过室内研究筛选采用纳米乳液、软硬结合的封堵剂、多元复配的润滑剂和高效提切剂,研发出新型强封堵超润滑水基钻井液体系。室内研究显示,该钻井液体系具有强抑制性和封堵防塌性,能够有效延长硬脆性泥岩失稳周期,进而深度维持井壁稳定,同时也具备良好的流变性和润滑性,且含砂和固相含量低,降摩减阻效果显著。现场应用表明,应用该钻井液体系后下套管摩阻控制在350 kN以内,钻进下放摩阻降低24.21%,扭矩降低34.31%,平均钻井周期为29.04 d,平均机械钻速为17.64m/h,较三开结构水平井提速36.5%,井塌划眼损失时间降低89.50%,为苏里格气田致密气藏二开结构水平井推广应用提供了有力保障。  相似文献   

15.
汽车船舶上光用乳化蜡的研制   总被引:2,自引:0,他引:2  
采用石蜡、微晶蜡为主要原料,经试验筛选出合适的乳化剂类型、乳化剂用量、乳化温度、搅拌速度、乳化剂含水量和其它添加剂。经优化配方和试验条件,使产品上光性能好,涂层均匀,性能稳定,成本低,附加值高,使用方便,且对环境无污染。  相似文献   

16.
有利于改进水包油钻井液性能的固体乳化剂的研制及应用   总被引:1,自引:0,他引:1  
在水基泥浆中加入5—12%矿物油(或柴油)所形成的水包油钻井液已在胜利油田广泛应用于防止卡钻的发生。但在某些情况下,这种泥浆体系的乳化稳定性不能满足钻井作业的需要。为了克服这一缺点,研制出一种颗粒极细并具有特殊润湿性(弱亲水)的固体乳化剂,并已成功地应用于改进乳状液的稳定性和钻井液的其它性能。 在提出该项技术之前,对各种不溶于水的微细固体颗粒对水包油乳状液稳定性的影响进行了较深入的研究。这些颗粒状物质包括膨润土、有机土、高岭石粉、重晶石粉、两种颗粒尺寸不同的碳酸钙粉、两种具有不同润湿性的硅石粉以及新研制的固体乳化剂。为评价这些微粒对乳化稳定性的贡献,分别开展了乳状液稳定性实验和液滴聚并实验。使用静置12h后乳状液的体积和油/水滴的半衰期作为乳状液稳定性的评价指标。实验结果显示,对于给定的油/水体系,乳状液类型和稳定性取决于固体颗粒的类型、尺寸、浓度和润湿性,以及是否有表面活性剂存在。与其它类型的颗粒相比,固体乳化剂的微粒可为水包油乳状液提供最有效的稳定性。同时实验中发现,在某些情况下,固体乳化剂微粒还能有效地稳定油包水乳状液,因为其润湿性接近于中性。 目前,使用新研制的固体乳化剂稳定的水包油乳化泥浆已经成为胜利油田钻定向井和水平  相似文献   

17.
钻井液用有机硅消泡剂的制备与评价   总被引:1,自引:0,他引:1  
研究了以有机硅为主体的乳液型钻井液消泡剂。通过实验确定了淡水泥浆中有机硅消泡剂最佳配方及制备条件为:有机硅质量分数15%,乳化剂质量分数5%,乳化温度80℃,乳化时间30min;盐水泥浆中有机硅消泡剂最佳配方及制备条件为:有机硅质量分数18%,乳化剂质量分数7%,乳化温度80℃,乳化时间30min。性能评价表明,该消泡剂具有用量少、与钻井液配伍性好、抗盐、抑泡能力强等特点,消泡效果优于传统钻井液消泡剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号