首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Correlations among the degree of crosslinking of ethylene vinyl acetate copolymer (EVA), the grafting yield of maleic anhydride (MAH) onto EVA, and the mechanical properties of the blends of poly(butylene terephtalate) (PBT) with EVA‐g‐MAH were investigated. The EVA was functionalized by melt grafting reaction in the presence of MAH and dicumyl peroxide (DCP) using a plasticorder. The grafting yield of MAH was increased by increasing the concentration of MAH and DCP. The flexural strength of PBT–EVA‐g‐MAH blends depends on both the grafting yield of MAH and the degree of crosslinking of EVA, while the crosslinked parts of EVA‐g‐MAH hindered rather than improved the tensile strength regardless of the increase of the grafting yield of MAH. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1305–1310, 2003  相似文献   

2.
The dynamic vulcanization process, usually used for the preparation of thermoplastic elastomers, was used to prepare polypropylene (PP)/epoxy blends. The blends had crosslinked epoxy resin particles finely dispersed in the PP matrix, and they were called dynamically cured PP/epoxy blends. Maleic anhydride grafted polypropylene (MAH‐g‐PP) was used as a compatibilizer. The effects of the reactive compatibilization and dynamic cure were studied with rheometry, capillary rheometry, and scanning electron microscopy (SEM). The crystallization behavior and mechanical properties of PP/epoxy, PP/MAH‐g‐PP/epoxy, and dynamically cured PP/epoxy blends were also investigated. The increase in the torque at equilibrium for the PP/MAH‐g‐PP/epoxy blends indicated the reaction between maleic anhydride groups of MAH‐g‐PP and the epoxy resin. The torque at equilibrium of the dynamically cured PP/epoxy blends increased with increasing epoxy resin content. Capillary rheological measurements also showed that the addition of MAH‐g‐PP or an increasing epoxy resin content increased the viscosity of PP/epoxy blends. SEM micrographs indicated that the PP/epoxy blends compatibilized with PP/MAH‐g‐PP had finer domains and more obscure boundaries than the PP/epoxy blends. A shift of the crystallization peak to a higher temperature for all the PP/epoxy blends indicated that uncured and cured epoxy resin particles in the blends could act as effective nucleating agents. The spherulites of pure PP were larger than those of PP in the PP/epoxy, PP/MAH‐g‐PP/epoxy, and dynamically cured PP/epoxy blends, as measured by polarized optical microscopy. The dynamically cured PP/epoxy blends had better mechanical properties than the PP/epoxy and PP/MAH‐g‐PP/epoxy blends. With increasing epoxy resin content, the flexural modulus of all the blends increased significantly, and the impact strength and tensile strength increased slightly, whereas the elongation at break decreased dramatically. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1437–1448, 2004  相似文献   

3.
Polyethylene terephthalate (PET) and polypropylene (PP) are incompatible thermoplastics because of differences in chemical structure and polarity, hence their blends possess inferior mechanical and thermal properties. Compatibilization with a suitable block/graft copolymer is one way to improve the mechanical and thermal properties of the PET/PP blend. In this study, the toughness, dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA) of PET/PP blends were investigated as a function of different content of styrene‐ethylene‐butylene‐styrene‐g‐maleic anhydride (SEBS‐g‐MAH) compatibilizer. PET, PP, and SEBS‐g‐MAH were melt‐blended in a single step using the counter rotating twin screw extruder with compatibilizer concentrations of 0, 5, 10, and 15 phr, respectively. The impact strength of compatibilized blend with 10 phr SEBS‐g‐MAH increased by 300% compared to the uncompatibilized blend. Scanning electron microscope (SEM) micrographs show that the addition of 10 phr SEBS‐g‐MAH compatibilizer into the PET/PP blends decreased the particle size of the dispersed PP phase to the minimum level. The improvement of the storage modulus and the decrease in the glass transition temperature of the PET phase indicated an interaction among the blend components. Thermal stability of the PET/PP blends was significantly improved because of the addition of SEBS‐g‐MAH. J. VINYL ADDIT. TECHNOL., 23:45–54, 2017. © 2015 Society of Plastics Engineers  相似文献   

4.
The dynamic rheological behavior is measured by small amplitude oscillatory shear on rotational rheometer for polypropylene/polyamide 6 (PP/PA6) blends compatibilized by a polypropylene grafted maleic anhydride (PP‐g‐MAH). Scanning electron microscope (SEM) results show that the PP/PP‐g‐MAH/PA6 (=100/6/40wt) is sea‐island structure, the PP/PP‐g‐MAH/PA6 (=100/6/60wt) blend is semi‐cocontinuous. Coarse PA6 zones can be observed when the weight ratio is 100/6/80. At low frequency the complex viscosity, dynamic modulus of the PP/PP‐g‐MAH/PA6 (PP/PP‐g‐MAH = 100/6wt) blends first increase then drop with the increase of PA6 weight content in the range of 0–100, the maximum value arrives at the weight content of 60. The Cole–Cole plots as well as the weighted relaxation spectra of the blends have a main arc and a tail when the weight ratio of PP/PP‐g‐MAH/PA6 is in the range of 100/6/20–100/6/60, but have different shapes when the weight ratio increases to 100/6/80 and 100/6/100. The possible reason is the weight ratio of 100/6/80 and 100/6/100 is close to the phase inversion point. In fitting the storage modulus data at low frequency, Palierne's model with two parameters interfacial tension and interfacial shear modulus is better than Bousmina's model. Palierne's model with only one parameter of interfacial tension can not fit the data well. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42091.  相似文献   

5.
The aim of this study was to improve the toughness of recycled poly(ethylene terephthalate) (PET)/glass fiber (GF) blends through the addition of ethylene–butyl acrylate–glycidyl methacrylate copolymer (EBAGMA) and maleic anhydride grafted polyethylene–octene (POE‐g‐MAH) individually. The morphology and mechanical properties of the ternary blend were also examined in this study. EBAGMA was more effective in toughening recycled PET/GF blends than POE‐g‐MAH; this resulted from its better compatibility with PET and stronger fiber/matrix bonding, as indicated by scanning electron microscopy images. The PET/GF/EBAGMA ternary blend had improved impact strength and well‐balanced mechanical properties at a loading of 8 wt % EBAGMA. The addition of POE‐g‐MAH weakened the fiber/matrix bonding due to more POE‐g‐MAH coated on the GF, which led to weakened impact strength, tensile strength, and flexural modulus. According to dynamic rheometer testing, the use of both EBAGMA and POE‐g‐MAH remarkably increased the melt storage modulus and dynamic viscosity. Differential scanning calorimetry analysis showed that the addition of EBAGMA lowered the crystallization rate of the PET/GF blend, whereas POE‐g‐MAH increased it. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Dimethyl terephthalate (DMT) and ethylene glycol (EG) were used for the preparation of poly(ethylene terephthalate) (PET), and poly(ethylene glycol) (PEG) was added as a soft segment to prepare a PET–PEG copolymer with a shape‐memory function. MWs of the PEG used were 200, 400, 600, and 1000 g/mol, and various molar ratios of EG and PEG were tried. Their tensile and shape‐memory properties were compared at various points. The glass‐transition and melting temperatures of PET–PEG copolymers decreased with increasing PEG molecular weight and content. A tensile test showed that the most ideal mechanical properties were obtained when the molar ratio of EG and PEG was set to 80:20 with 200 g/mol of PEG. The shape memory of the copolymer with maleic anhydride (MAH) as a crosslinking agent was also tested in terms of shape retention and shape recovery rate. The amount of MAH added was between 0.5 and 2.5 mol % with respect to DMT, and tensile properties and shape retention and recovery rate generally improved with increasing MAH. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 27–37, 2002  相似文献   

7.
Uncrosslinked and chemically crosslinked binary blends of low‐ and high‐density polyethylene (PE), with ethylene vinyl acetate copolymer (EVA), were prepared by a melt‐mixing process using 0–3 wt % tert‐butyl cumyl peroxide (BCUP). The uncrosslinked blends revealed two distinct unchanged melting peaks corresponding to the individual components of the blends, but with a reduced overall degree of crystallinity. The crosslinking further reduced crystallinity, but enhanced compatibility between EVA and polyethylene, with LDPE being more compatible than HDPE. Blended with 20 wt % EVA, the EVA melting peak was almost disappeared after the addition of BCUP, and only the corresponding PE melting point was observed at a lowered temperature. But blended with 40% EVA, two peaks still existed with a slight shift toward lower temperatures. Changes of mechanical properties with blending ratio, crosslinking, and temperature had been dominated by the extent of crystallinity, crosslinking degree, and morphology of the blend. A good correlation was observed between elongation‐at‐break and morphological properties. The blends with higher level of compatibility showed less deviation from the additive rule of mixtures. The deviation became more pronounced for HDPE/EVA blends in the phase inversion region, while an opposite trend was observed for LDPE/EVA blends with co‐continuous morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3261–3270, 2007  相似文献   

8.
In this article, the dynamic vulcanization process was applied to polypropylene (PP)/Novolac blends compatibilized with maleic anhydride‐grafted PP (MAH‐g‐PP). The influences of dynamic cure, content of MAH‐g‐PP, Novolac, and curing agent on mechanical properties of the PP/Novolac blends were investigated. The results showed that the dynamically cured PP/MAH‐g‐PP/Novolac blend had the best mechanical properties among all PP/Novolac blends. The dynamic cure of Novolac improved the modulus and stiffness of the PP/Novolac blends. The addition of MAH‐g‐PP into dynamically cured PP/Novolac blend further enhanced the mechanical properties. With increasing Novolac content, tensile strength, flexural modulus, and flexural strength increased significantly, while the elongation at break dramatically deceased. Those blends with hexamethylenetetramine (HMTA) as a curing agent had good mechanical properties at HMTA content of 10 wt %. Scanning electron microscopy (SEM) analysis showed that dynamically cured PP/MAH‐g‐PP/Novolac blends had finer domains than the PP/MAH‐g‐PP/Novolac blends. Thermogravimetric analysis (TGA) results indicated that the incorporation of Novolac into PP could improve the thermal stability of PP. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

9.
A new kind of blends of polyvinyl chloride (PVC)/nylon terpolymer was reported in this article. Two compatibilizers were used in this study: one is a terpolymer of ethylene–n‐butyl acrylate–monoxide (EnBACO); the other is terpolymer of EnBACO grafted with maleic anhydride (EnBACO‐g‐MAH). The observation of scanning electron microscope (SEM) reveals that the PVC/nylon terpolymer blends have a two‐phase structure; and the nylon terpolymer phase is the continuous phase, and PVC domains in the PVC/nylon terpolymer/EnBACO‐g‐MAH blends have fine dispersion over a broad range of the PVC/nylon terpolymer ratio. EnBACO‐g‐MAH is more compatible with the nylon terpolymer than EnBACO. EnBACO and EnBACO‐g‐MAH have different effects on the glass transition temperatures of the PVC phase and nylon terpolymer phase in the blends. The notched Izod impact strength, tensile strength, elongation at break, Vicat softening temperature (VST), and melt flow index (MFI) critically depend on PVC/nylon terpolymer ratio, the kinds and concentration of the compatibilizers. The PVC/nylon terpolymer/EnBACO‐g‐MAH blends display a good combination of high toughness, high flowability, and high VST under low load. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2823–2832, 2001  相似文献   

10.
This study investigated the effect of dynamic crosslinking of polyamide 6,12 and random copolymers of ethylene and vinyl acetate blends (PA6,12/EVA) on the morphology, crystallinity, and dynamic mechanical properties. The crosslinking agent was dicumyl peroxide (DCP), and the blends were processed in a torque rheometer. The morphology depended on the DCP content, and all blends exhibited the same crystallinity index. However, with increasing crosslinking degree, the interfacial tackiness (E) values increased from 1.8 to 2.7 nm. The lamellar structures of all blends started forming at approximately 160 °C, close to the temperature of pure polyamide. The crosslinked phase enhanced the pseudo‐elastic behavior of the blends and increased their molecular mobility activation energy. Samples with higher crosslinking degree exhibited smaller permanent deformation (0.01%) than those with low crosslinking. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44206.  相似文献   

11.
Styrene butadiene rubber (SBR) was modified by the grafting reaction of maleic anhydride (MAH) in the presence of the initiator benzoyl peroxide (BPO). This modified elastomer was then blended with poly(ethylene terephthalate) (PET) bottle waste, and the mechanical and morphological properties of the resulting blends were studied. The amount of grafted MAH was determined by chemical titration. The results revealed that the concentrations of MAH and BPO strongly affected the grafting process. The morphology of the dispersed phase for blends of PET waste and SBR‐g‐MAH was quite different from that of a simple blend of PET waste and SBR. Dynamic mechanical thermal analysis revealed suitable compatibility between PET waste and styrene butadiene rubber‐graft‐maleic anhydride (SBR‐g‐MAH). The enhanced compatibility resulted in better impact properties. The better compatibility was concluded to result from bond formation between the carbonyl group of SBR‐g‐MAH and the hydroxyl or carboxyl end groups of PET. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1615–1623, 2006  相似文献   

12.
Dynamic vulcanization was successfully applied to epoxy resin reinforced polypropylene (PP)/ethylene‐octene copolymer (POE) blends, and the effects of different compatibilizers on the morphology and properties of dynamically cured PP/POE/epoxy blends were studied. The results show that dynamically cured PP/POE/epoxy blends compatibilized with maleic anhydride‐grafted polypropylene (MAH‐g‐PP) have a three‐phase structure consisting of POE and epoxy particles dispersed in the PP continuous phase, and these blends had improved tensile strength and flexural modulus. While using maleic anhydride‐grafted POE (MAH‐g‐POE) as a compatibilizer, the structure of the core‐shell complex phase and the PP continuous phase showed that epoxy particles could be embedded in MAH‐g‐POE in the blends, and gave rise to an increase in impact strength, while retaining a certain strength and modulus. DSC analysis showed that the epoxy particles in the blends compatibilized with MAH‐g‐PP were more efficient nucleating agents for PP than they were in the blends compatibilized with MAH‐g‐POE. WAXD analysis shows that compatibilization do not disturb the crystalline structure of PP in the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
In this work the thermal and transport properties of dichloromethane in blends of a bottle‐grade polyethylene terephthalate copolymer, PET, and a liquid crystalline polymer, LCP, were measured. Thermal characterizations of the blends were made by modulated differential scanning calorimetry and dynamic mechanical thermal analyses. An approximated LCP “bulk orientation” was also calculated by wide angle X‐ray diffraction. The morphology was analyzed by scanning electron microscopy. The resulting sorption curves of pure PET, and the B20, B40 and B60 blends were sigmoid type curves, while the sorption curve of the B80 blend was a two‐stage type curve. The diffusion coefficients of the B20 and B40 blends were found to be the lowest of all the blends. These low diffusivities were attributed to the occurrence of strong long‐range and short‐range interactions between the PET and the LCP in the B20 and B40 blends, and also to the perfection of the PET crystals in the B20 blend.  相似文献   

14.
Blends of recycled poly(ethylene terephthalate) (R‐PET) and (styrene‐ethylene‐ethylene‐propylene‐styrene) block copolymer (SEEPS) compatibilized with (maleic anhydride)‐grafted‐styrene‐ethylene‐butylene‐styrene (SEBS‐g‐MAH) were prepared by melt blending. The compatibilizing effects of SEBS‐g‐MAH were investigated systematically by study of the morphology, linear viscoelastic behavior, and thermal and mechanical properties of the blends. The results show that there is good agreement between the results obtained by rheological measurement and morphological analysis. The rheological test shows that the melt elasticity and melt strength of the blends increase with the addition of SEBS‐g‐MAH. The Cole‐Cole plots and van Gurp‐Palmen plots confirm the compatibilizing effect of SEBS‐g‐MAH. However, the Palierne model fails to predict the linear viscoelastic properties of the blends. The morphology observation shows that all blends exhibit a droplet‐matrix morphology. In addition, the SEEPS particle size in the (R‐PET)/SEEPS blends is significantly decreased and dispersed uniformly by the addition of SEBS‐g‐MAH. Differential scanning calorimeter analysis shows that the crystallization behavior of R‐PET is restricted by the incorporation of SEEPS, whereas the addition of SEBS‐g‐MAH improves the crystallization behavior of R‐PET compared with that of uncompatibilized (R‐PET)/SEEPS blends. The Charpy impact strength of the blends shows the highest value at SEBS‐g‐MAH content of 10%, which is about 210% higher than that of pure R‐PET. J. VINYL ADDIT. TECHNOL., 22:342–349, 2016. © 2014 Society of Plastics Engineers  相似文献   

15.
Compatibilized poly(ether imide)/amorphous polyamide (PEI/a‐PA) blends were obtained in the melt state by substitution of 20% PEI by poly(ethylene terephthalate), PET. The two amorphous phases of the blends comprised both a miscibilized 80/20 PEI/PET blend and an a‐PA‐rich phase in which small amounts of PET and probably PEI were present. The presence of PET in the two phases of most of the blends was the main reason for the clear decrease in the particle size that indicated compatibilization. The smaller interfacial tension of the blends after PET addition also proved that compatibilization had occurred. The deviation of the modulus with respect to the direct rule of mixtures was positive in PEI‐rich blends and negative in the blends very rich in a‐PA. The modulus values were tentatively attributed to a different orientation of the components of the blends in the blends and in the neat state. The clear increases in ductility and the impact strength after PET addition further demonstrated the compatibilization effect of PET. POLYM. ENG. SCI., 46: 1292–1298, 2006. © 2006 Society of Plastics Engineers  相似文献   

16.
This work investigates the evolution of the rheological properties of elastomeric dynamically vulcanized ethylene‐α‐olefin copolymers (ECs) and their blends with polypropylene (PP), during peroxide initiated crosslinking. Rheological techniques are used in conjunction with gel content measurements to determine the onset of gelation during static crosslinking. The complex viscosity and moduli follow power‐law dependence with respect to frequency at the gel point. The relaxation exponent and corresponding values of tan δ at the gel point are determined from the complex viscosity versus frequency curves and used as criteria for the determination of the instance of gelation. The evolution of morphology of thermoplastic vulcanizate (TPV) blends consisting of EC and PP during dynamic crosslinking is discussed in the context of the evolving rheological properties of the matrix and the dispersed phase that take place upon peroxide modification. TPVs having the crosslinked EC as the matrix present a very fine morphology, whereas the blends containing crosslinked EC particles, present a coarser morphology. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

17.
Dynamically vulcanized blends of polyoxymethylene (POM) and ethylene propylene diene terpolymer (EPDM) with and without compatibilizer were prepared by melt mixing in a twin screw extruder. Maleic anhydride (MAH) grafted EPDM (EPDM‐g‐MAH) has been used as a compatibilizer. Dicumyl peroxide was used for vulcanizing the elastomer phase in the blends. Mechanical, dynamical mechanical, thermal, and morphological properties of the blend systems have been investigated as a function of blend composition and compatibilizer content. The impact strength of both dynamically vulcanized blends and compatibilized/dynamically vulcanized blends increases with increase in elastomer content with decrease in tensile strength. Dynamic mechanical analysis shows decrease in tanδ values as the elastomer and compatibilizer content increased. Thermograms obtained from differential scanning calorimetric studies reveal that compatibilized blends have lower Tm values compared to dynamically vulcanized blends, which confirms strong interaction between the plastic and elastomer phase. Scanning electron microscopic observations on impact fractured surface indicate reduction in particle size of elastomer phase and its high level of dispersion in the POM matrix. In the case of compatibilized blends high degree of interaction between the component polymers has been observed. POLYM. ENG. SCI., 47:934–942, 2007. © 2007 Society of Plastics Engineers  相似文献   

18.
The tensile properties and morphology of the polyolefin ternary blends of ethylenepropylene–diene terpolymer (EPDM), polypropylene and high density polyethylene were studied. Blends were prepared in a laboratory internal mixer where EPDM was cured in the presence of PP and HDPE under shear with dicumyl peroxide (DCP). For comparison, blends were also prepared from EPDM which was dynamically cured alone and blended with PP and HDPE later (cure–blend). The effect of DCP concentration, intensity of the shear mixing, and rubber/plastics composition was studied. The tensile strength and modulus increased with increasing DCP concentration in the blends of EPDM-rich compositions but decreased with increasing DCP concentration in blends of PP-rich compositions. In the morphological analysis by scanning electron microscopy (SEM), the small amount of EPDM acted as a compatibilizer to HDPE and PP. It was also revealed that the dynamic curing process could reduce the domain size of the crosslinked EPDM phase. When the EPDM forms the matrix, the phase separation effect becomes dominant between the EPDM matrix and PP or HDPE domain due to the crosslinking in the matrix.  相似文献   

19.
A series of multiblock polyurethanes, containing various poly(ethylene oxide) (PEO; number‐average molecular weight = 400–3400) contents (0–80 wt %) and prepared from hexamethylene diisocyanate/PEO/poly(dimethylsiloxane) diol/polybutadiene diol/1,4‐butanediol, were used as modifying additives (30 wt %) to improve the properties of biomedical‐grade Pellethene. Different molecular weights of PEO were used to keep poly(ethylene glycol) at a fixed molar content, if possible, although the PEO content, related to the PEO block length in the multiblock polyurethanes, was varied from 0 to 80 wt %. The hydrophilic PEO component was introduced through the addition of PEO‐containing polyurethanes and dicumyl peroxide as a crosslinking agent in a Pellethene matrix. As the PEO content (PEO block length) increased, the hydrogen‐bonding fraction of the crosslinked Pellethene/multiblock polyurethane blends increased, and this indicated an increase in the phase separation with an increase in the PEO content in the crosslinked Pellethene/multiblock polyurethane blends. According to electron spectroscopy for chemical analysis, the ratio of ether carbon to alkyl carbon in the crosslinked Pellethene/multiblock polyurethane blends increased remarkably with increasing PEO content. The water contact angle of the crosslinked Pellethene/multiblock polyurethane blend film surfaces decreased with increasing PEO content. The water absorption and mechanical properties (tensile modulus, strength, and elongation at break) of the crosslinked Pellethene/multiblock polyurethane blend films increased with increasing PEO content. The platelet adhesion on the crosslinked Pellethene/multiblock polyurethane blend film surfaces decreased significantly with increasing PEO content. These results suggest that crosslinked Pellethene/multiblock polyurethane blends containing the hydrophilic component PEO may have potential for biomaterials that come into direct contact with blood. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2348–2357, 2004  相似文献   

20.
Summary Unvulcanized and dynamically vulcanized blends of poly(epichlorohydrin-co-ethylene oxide) elastomer and polypropylene have been prepared by melt mixing in an internal mixer. The solvent resistance, morphology, dynamic mechanical and mechanical properties of these blends were studied with special reference to the effect of the crosslinking agent content. The swelling behaviour shows that the blends, with and without dynamic vulcanization, present excellent resistance to solvents ASTM A, B, C and D, at room temperature. Morphology study by scanning electron microscopy of the cryofractured surface and analysis of the dynamic mechanical properties of the system indicate that the uncrosslinked blend is immiscible and form a two-phase structure, where the rubber phase was dispersed as domains in the continuous polypropylene matrix. The mechanical properties of the crosslinked blends do not improve by increasing the doses of crosslinking agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号