首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
采用静电纺丝技术制备聚丙烯腈(PAN)纳米纤维薄膜并对其进行空气过滤应用研究.探讨了纺丝溶液质量分数对纳米纤维微观形貌的影响,以及微观形貌与过滤效果之间的关系;研究了不同电纺时间对空气过滤效果的影响规律.研究结果表明,在其它工艺参数不变的情况下,纺丝液质量分数为6%时,所得纤维直径最小,为76.69nm;当静电纺时间由2h增加到5h,纳米纤维膜的孔径由0.35μm下降到0.247μm,其过滤效率相应地由87.6%提高到98.5%.  相似文献   

2.
将载银二氧化锰(Ag/MnO2)与丙烯腈-偏氯乙烯(AN-VDC)共聚体共混,以N-N二甲基甲酰胺(DMF)为溶剂通过静电纺纺制腈氯纶吸附催化纳米纤维;研究Ag/MnO2作为无机共混添加物在腈氯纶纺丝原液中的含量、分散性及纺丝工艺参数对纤维形貌的影响,确定了最佳制备条件为:纺丝液中丙烯腈-偏氯乙烯共聚体质量分数为16%、纺丝电压为25 kV、Ag/MnO2的质量分数为25%、PVP分散剂质量分数为1.6%.  相似文献   

3.
为制备CuFeMnO_4/PAN复合纤维,分别用共沉淀-高温煅烧工艺和共沉淀-水热合成工艺制备了CuFeMnO_4粉体,探讨了两种制备工艺所制得CuFeMnO_4颗粒尺寸的差异对其可纺性能的影响。将可纺的纳米CuFeMnO_4粉体和PAN混合采用静电纺丝技术制备复合纤维,利用XPS、XRD、SEM、UV-Vis-NIR、TG和自组装的吸热性能测试装置进行了结构和性能表征。结果表明,共沉淀-水热法可制得粒径小于50nm、适合静电纺丝的CuFeMnO_4粉体,各元素主要以Cu~(2+)、Fe~(3+)、Mn~(3+)存在,同时存在少量Mn~(2+);与PAN纤维相比,复合纤维直径增大,且可见光区平均吸收率提高了73.18%,模拟太阳光源照射下的最高温度提高了31.4℃;TG分析发现复合纤维中由于强氧化性CuFeMnO_4粉体存在,加速了PAN热分解。  相似文献   

4.
静电纺丝技术制备PAN/PVDF-HFP复合纳米纤维膜,对PAN/PVDF-HFP/PAN三层结构复合膜进行热压处理,对其力学性能进行分析评价,最后组装纽扣型超级电容器,并对其电化学性能进行分析测试.结果表明:静电纺PAN纺丝溶液中DMF/丙酮溶剂体系的最佳配比为7∶3;PAN/PVDF-HFP热压复合最佳温度和时间为120℃和60 s,此时复合膜的断裂强度为13.5 MPa;PAN/PVDF-HFP复合膜作为超级电容器隔膜,其等效串联电阻(ESR)为0.57Ω,小于商品膜Celgard2400的0.64Ω;,CV曲线在5 m V/s扫速下仍保持较好的矩形特征,GCD曲线在0.05 A/g电流密度下比容量为79.55 F/g,高于商品膜Celgard2400的62.78 F/g.  相似文献   

5.
利用静电纺丝法制备了聚丙烯腈(PAN)/聚氧化乙烯(PEO)复合纳米纤维膜.利用原子力显微镜(AFM)、电子显微镜(SEM)分析了纤维的直径分布、整体形貌及单根纳米纤维的表面形貌;应用傅里叶变换红外光谱(FT-IR)分析了PAN、PAN/PEO、PEO纳米纤维膜的化学组成;同时借助热重(TG)和液滴形状分析仪分析了PEO的加入对复合纤维膜热性能及润湿性能的影响.结果表明:在PAN/PEO比例为5∶5时,纤维膜最有利于制备聚合物电解质膜.  相似文献   

6.
以聚丙烯腈、N,N-二甲基甲酰胺、偏钨酸铵(AMT)为原料,采用静电纺丝法制备了碳化钨/碳(WC/C)复合纤维,对其微观形貌以及析氢活性进行了表征。结果表明,纺丝液中不同偏钨酸铵含量情况下都可以获得连续的纺出纤维,但热处理后的WC/C复合纤维长度随着偏钨酸铵含量的增加而减小。随着纺丝液中偏钨酸铵含量的增加,WC/C复合纤维材料的过电势减小,电化学活性面积增大,AMT-1.2的过电势为162 mV,表明WC赋予WC/C复合纤维良好的催化活性。随着复合纤维中WC增加,其塔费尔斜率不断增大,在一定程度上降低了析氢电化学反应速度,但赋予其良好的耐腐蚀性能。  相似文献   

7.
为有效隔离空气中的PM_(2.5)颗粒,利用静电离心纺丝技术,以聚丙烯腈(PAN)和N,N-二甲基甲酰胺(DMF)为原料制备具有一定蓬松度且纤维排列有序的超细纤维膜。研究PAN分子量、PAN/DMF比例、针头尺寸、纺丝转速对超细纤维膜形貌及直径的影响,分析纤维膜克重及过滤风速对超细纤维膜过滤效率及空气阻力的影响。结果表明:当PAN分子量为1.5×10~5,PAN/DMF质量比为15/85,针头规格为27G,转速为2500 r/min时,制备的超细纤维膜纤维排列紧密,没有明显串珠存在,其形貌最佳;所得超细纤维膜对PM_(2.5)过滤性能达到98%以上,空气压降低于20 Pa,可有效阻隔PM_(2.5)颗粒,将为新型空气过滤材料开发提供参考。  相似文献   

8.
通过静电纺丝技术获得直径约为200 nm,均匀且取向随机的Tb(BA)_3Phen掺杂聚丙烯腈(PAN)纳米纤维。采用扫描电子显微镜、傅里叶红外光谱仪、紫外/可见/近红外分光光度计、差式扫描量热仪和荧光光谱仪对样品的形貌及性能进行了分析。荧光复合材料的激发光谱表明,有效激发波长范围为220~350 nm。在紫外激发下,Tb(BA)_3Phen/PAN复合材料呈现出强烈的绿色荧光发射。随着Tb(BA)_3Phen掺杂量的增加,荧光强度明显增强。同时,静电纺纤维的发光强度可达体材料的5倍以上,进一步证实了静电纺纤维化对荧光体光辐射效果的增强作用。强烈的荧光发射和良好柔韧性能表明铽配合物掺杂PAN纤维在防伪识别、智能服装、光电显示等方面拥有特殊的优势和潜能。  相似文献   

9.
采用静电纺丝法制备了PA6/PVA复合纳米纤维.分析了不同质量比的PA6/PVA共混纺丝溶液的粘度、电导率、表面张力,并探讨其静电纺丝效果.采用扫描电镜、红外光谱、表面张力仪等对纳米纤维膜的形貌结构、成分相容性及亲水性能进行表征.结果表明,在纺丝电压为19kV、纺丝距离为20cm、丝液流量为0.2mL/h的条件下,共混溶液质量比为12%∶4%时的静电纺丝所得纤维具有良好的形貌,复合纳米纤维中PA6与PVA具有良好的相容性,并有效地克服了纯纺PVA纳米纤维在水溶液中出现的过度溶胀问题.  相似文献   

10.
采用单因素水平实验法,对所收集到的静电纺样品通过SEM进行微观形貌分析,探究醋酸丁酸纤维素(CAB)在静电纺丝时最佳浓度、电纺电压和接收距离。实验结果表明,20wt%的CAB溶液在25KV电压下,水平接收距离为20cm时静电纺出的纤维膜最佳。  相似文献   

11.
为了探究锆钛酸铅(PZT)陶瓷纳米纤维在柔性复合薄膜中的应用,文中采用"静电纺丝"工艺制备了PZT陶瓷纳米纤维和PZT/TPU柔性复合薄膜,分析了PZT陶瓷纤维的结构,陶瓷纤维及静电纺丝薄膜的形貌,以及薄膜中的元素分布。实验结果表明:文中制备的PZT陶瓷纤维表面光滑,形貌完整,直径为?300 nm~?400 nm,锆钛含量对其无明显影响;陶瓷纤维具有明显的钙钛矿结构,随着钛含量的增加,陶瓷纤维的三方相结构转变为四方相结构;PZT/TPU柔性复合薄膜中陶瓷纤维分散均匀,纤维直径为?400 nm~?600 nm。  相似文献   

12.
以离子液体1-乙基-3-甲基咪唑醋酸盐([Emim][Ac])和二甲基亚砜(DMSO)组成的新型有机电解质体系为溶剂,将精制后的碱木质素与聚丙烯腈(PAN)溶解共混配制成纺丝液,通过高压静电纺丝法成功地制备了木质素基碳纤维原丝,并探讨了固体质量分数、木质素相对分子质量及木质素与PAN的配比对木质素基碳纤维原丝可纺性能的影响。当固体质量分数为10%、木质素的相对分子质量大于50 000、木质素与PAN的配比为2∶8时,纤维可纺性最佳。  相似文献   

13.
聚焦接收电极制备定向排列纳米纤维阵列   总被引:1,自引:1,他引:0  
以聚丙烯腈(PAN)/N,N-二甲基甲酰胺(DMF)溶液为纺丝原液,利用静电纺丝方法制备纳米纤维,采用聚焦电极作为纳米纤维接收装置,研究了不锈钢棒数量、接收距离、溶液浓度、溶液流速、电压以及电极转速等参数对于纺丝过程及纤维沉积形态的影响规律。选用聚焦电极作为纳米纤维接收装置不仅可以使获得的纤维集合体呈现悬浮状态,而且使纤维能够定向排列,为扩大静电纺纳米纤维的研究应用提供了便利条件。  相似文献   

14.
水溶性纳米级纤维毡的纺制工艺   总被引:8,自引:0,他引:8  
静电纺丝是制备超细纤维和纳米纤维的新方法。静电纺丝能纺制直径在几十纳米至几微米之间的纤维并使其形成无纺布状的纤维毡。本实验在研制静电纺丝装置的基础上,以水溶性高聚物聚乙烯醇水溶液为纺丝液,制得直径在100nm~600nm的纤维。通过调节电压、纺丝液浓度及喷丝口与接收屏之间的距离等工艺参数得到不同粗细的纳米级纤维毡,研究了静电纺丝过程和工艺参数与纤维的表面形态特征之间的关系。研究结果表明,只有在一定的条件下,才能纺得稳定的和粗细均匀的纳米级纤维。  相似文献   

15.
利用静电纺丝制备聚丙烯腈/醋酸纤维素(PAN/CA)复合纳米纤维膜,并依次用0.05mol/L、0.1mol/L NaOH溶液对其进行水解处理,制得聚丙烯腈/再生纤维素(PAN/RC)复合纳米纤维膜.研究表明:纺丝液流量为0.5mL/h,所施加的电压为17kV,接收距离为18cm时,制得的PAN/CA复合纳米纤维直径更均匀,成丝形态更稳定.对PAN/CA复合纳米纤维膜及PAN/RC复合纳米纤维膜分别进行电镜扫描、红外光谱分析及静态接触角测定.结果表明:水解后的复合纳米纤维形态保持稳定,PAN/CA复合纳米纤维中的醋酸纤维素的酯基在碱处理后得到有效水解,复合纳米纤维膜的静态接触角由水解前的124.7°降低为10.1°,亲水性能得到大幅提升.  相似文献   

16.
以无水乙醇为溶剂,聚乙烯吡咯烷酮和正硅酸乙酯为原料,通过溶胶-凝胶法制备纺丝前驱体,然后利用静电纺丝技术得到电纺纤维,再经煅烧处理后得到外径150nm左右的二氧化硅纳米管。通过场发射扫描电子显微镜(FE-SEM)和透射电子显微镜(TEM)研究电纺纤维和二氧化硅纳米管的形貌,利用傅里叶转换红外光谱(FTIR)和X-射线多晶粉末衍射仪(XRD)证明二氧化硅纳米管的形成。结果显示:当纺丝参数分别为电压10kV、流速1.5mL/h、接收距离14cm,原料配方为:聚乙烯吡咯烷酮1.5g、无水乙醇16mL、正硅酸乙酯3.2mL时,获得的电纺纤维和二氧化硅纳米管均具有良好的形貌。  相似文献   

17.
为研究静电纺丝工艺对CS/PVP纳米纤维膜纤维形貌和直径的影响,以甲酸为溶剂配制质量分数为4%的CS溶液,以无水乙醇为溶剂配制质量分数为35%的PVP溶液,将PVP溶液与CS溶液按质量比90∶10混合,搅拌均匀作为纺丝液,调节纺丝电压、接受距离和纺丝速率分别制备纳米纤维,借助扫描电镜(SEM)观察制备的纳米纤维形貌.结果表明,在选定的纺丝工艺参数中,纺丝电压对纤维的形貌和直径影响较大,而纺丝速率和接受距离对纤维的形貌和直径影响相对较小;当纺丝电压为18 k V、接受距离为12 cm、纺丝速率为0.2 m L/h时,纤维形貌较好.  相似文献   

18.
为了提高PAN的压电性能,利用静电纺丝法制备了不同BaTiO_3质量分数下PAN电纺纤维膜,通过实验室自制压电设备、SEM、FTIR、XRD以及介电谱仪等对电纺纤维膜压电性能进行表征与分析.测试结果表明:用硅烷偶联剂(KH550)处理后的BaTiO_3可均匀地分散在PAN纳米纤维内.与PAN电纺纤维膜相比,当BaTiO_3质量分数为12.5%时PAN/BaTiO_3电纺纤维膜的输出电压提高了300%,介电常数提高了300%,而介电损耗却降低了67%;FTIR与XRD测试结果显示,BaTiO_3的加入可促进PAN从31螺旋构象向平面锯齿构象的转变,从而提高PAN的压电性能.  相似文献   

19.
静电纺丝技术是目前制备纳米纤维最直接有效的方法,首先简要介绍静电纺丝技术制备纳米纤维的原理及影响所制纳米纤维形貌的因素,然后概括静电纺丝技术在医学、环境保护等方面的应用,详述静电纺丝技术所面临的纳米纤维有序排列、纳米纤维成纱和静电纺技术产业化等一系列难题,并提出了现有的较好的解决方法,最后从理论和应用两方面对静电纺的发展趋势做出展望。  相似文献   

20.
以甲苯和N,N二甲基甲酰胺(DMF)混合液为溶剂,采用静电纺丝法制备了PVK纳米纤维;通过扫描电子显微镜(SEM)对纤维形貌进行了表征,并进一步研究了浓度、纺丝电压及纺丝距离等实验条件对纤维形貌的影响;采用荧光发射光谱及荧光显微镜对电纺纤维进行了光学表征.结果表明:纤维直径随着纺丝溶液质量分数的增加而增大;随着电压的增加先减小后增加;随着纺丝距离的增加而减小.荧光显微镜分析表明:PVK电纺纤维在紫外光照下发蓝紫光.荧光光谱分析表明:与PVK薄膜比较,PVK电纺纤维在437 nm处出现一个新的发射峰.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号