首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water‐soluble, biodegradable, and biocompatible poly(ester‐amide) dendrimers with hydroxyl functional groups are synthesized from previously prepared AB2 adduct of 2,2‐bis(hydroxymethyl) propanoic acid (bis‐MPA) and glycine as a repeating unit. Two esterification procedures using different coupling reagent/catalyst systems (DCC/DPTS or EDC/DMAP) are studied with respect to efficiency, ease of products purification, and quality of the final products. Both procedures have their own benefits and drawbacks, depending on dendrimer generation. The synthesized poly(ester‐amide) dendrimers as well as commercially available bis‐MPA dendrimers, poly(ester‐amide) hyperbranched polymer, and poly(vinyl alcohol) are used for preparation of solid dispersions of sulfonylurea antidiabetic drug glimepiride to improve its poor water‐solubility. In vitro dissolution studies show in comparison with pure glimepiride in crystalline or amorphous form, to the same extent improved glimepiride solubility for solid dispersions based on dendritic polymers, but not for poly(vinyl alcohol). The amount of glimepiride complexed with both dendrimer types increases with dendrimer generation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3292–3301  相似文献   

2.
New light emitting dendrimers were synthesized by reacting 3,5‐bis‐(3,5‐bis‐benzyloxy‐benzyloxy)‐benzoic acid or 3,5‐bis‐[3,5‐bis‐(3,5‐bis‐benzyloxy‐benzyloxy)‐benzyloxy]‐benzoic acid with a carbazolyl vinyl spirobifluorene moiety. A blue‐emitting core dye was encapsulated by multibenzyloxy dendrons, and two dendrimers having different densities of dendrons were prepared. Photoluminescence (PL) studies of the dendrimers demonstrated that at the higher density of benzyloxy dendrons, the featureless vibronic transitions were improved, causing lesser excimer emission. The similarity of the solution and solid emission spectra of the larger dendrimer, 10 , revealed the suppression of molecular aggregation in the solid film, which is attributed to the presence of the bulky benzyloxy dendrons. The electroluminescence spectra of multilayered devices made using 10 predominantly exhibited blue emissions; similar emission was observed in the PL spectra of its thin film. The multilayered devices made using 3 , 9 , and 10 showed luminances of 1021 cd m?2 at 5 V, 916 cd m?2 at 6 V, and 851 cd m?2 at 6.5 V, respectively. The largest dendrimer, 10 , bearing a greater number of benzyloxy dendrons, exhibited a blue‐like emission with CIE 1931 chromaticity coordinates of x = 0.16 and y = 0.13, which is due to the influence of a higher shielding effect. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 501–514, 2008  相似文献   

3.
A novel cellobiose–polylysine dendrimer with reducing sugar terminals was synthesized in which the reactive reducing end of a disaccharide cellobiose was directing outward. Hexa‐O‐benzyl‐4′‐(1‐carboxyethyl)‐cellobioside (HBCEC) was synthesized through the reaction of a 4′‐hydroxyl group of benzyl hexa‐O‐benzyl‐cellobioside with methyl 2‐chloropropionate, followed by the removal of the methyl ester group. HBCEC was reacted with polylysine dendrimer generation 3 (G3) to produce benzylated cellobiose–polylysine dendrimer G3. After debenzylation, a cellobiose–polylysine dendrimer G3 was obtained in which the reducing end of the cellobiose was the terminal group of the dendrimer. For the preparation of a dendrimer‐type acquired immunodeficiency syndrome vaccine, the cellobiose–polylysine dendrimer was reacted with a tripeptide (glycyl–prolyl–leucine) and a cyclic oligopeptide from the human immunodeficiency virus by reductive amination; this produced a tripeptide‐bound cellobiose–polylysine dendrimer and an insoluble compound, respectively. The structure analysis was carried out with NMR and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2195–2206, 2005  相似文献   

4.
Poly(propyl ether imine) (PETIM) dendrimers of one to three generations are used as dendritic cores to identify the influence of varying connector types that connect the dendritic core with peripheral mesogens on the emerging liquid crystalline (LC) properties. The LC properties vary in these dendritic liquid crystals, even when the dendrimer generations and thus the number of peripheral mesogenic moieties remain identical. PETIM dendrimer generations one to three, ester and amide connectors varying with succinates, phthalates, and succinamides, are studied herein. Cholesteryl moieties are installed at the peripheries through the above connectors to induce mesogenic properties. These modified dendritic liquid crystals reveal a layered mesophase structure in most ester and amide connector‐derivatives, whereas a third‐generation phthalate ester dendrimer favors a rectangular columnar mesophase structure. A transition from layered to a rectangular columnar structure results by a mere change in the connector varying between a succinate or succinamide or phthalate, within one particular dendrimer generation and without altering the underlying dendrimer core or the number of mesogenic moieties. The study demonstrates that in dendritic liquid crystals with essentially identical chemical constitutions, a change in the connector type connecting the mesogen with the dendrimer core is sufficient to change the mesophase structures. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3665–3678  相似文献   

5.
A new type of guest has been designed and synthesized for the exo‐type supramolecular functionalization of adamantyl‐urea‐terminated poly(propylene imine) dendrimers. This new type of guest motif features a uriedo methane sulfonic acid moiety that binds very selectively to the surfaces of dendrimers via a combination of noncovalent interactions forming well‐defined complexes. The guest–host properties have been examined for a fifth‐generation adamantyl‐urea‐functionalized poly(propylene imine) dendrimer capable of binding 32 guest molecules and for a model host molecule that can bind only one guest molecule. The guest–host chemistry has been studied with 1H NMR spectroscopy, nuclear Overhauser enhancement spectroscopy NMR spectroscopy, T1‐relaxation NMR experiments, and IR spectroscopy. The 1:32 ratio with the dendrimer has been confirmed unambiguously from 1H NMR spectra of the complex after size exclusion chromatography. Competition experiments with guests bearing a carboxylic acid instead of a sulfonic acid in the binding motif have demonstrated that the sulfonic acid has superior binding strength. Also, the importance of a combination of noncovalent interactions has been shown via competition experiments with a guest lacking the uriedo moiety. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3792–3799, 2004  相似文献   

6.
Mannose‐functionalized and ethoxyethanol‐functionalized poly(amido)amine dendrimers bound multiple vanadate‐substituted polyoxotungstate Wells–Dawson‐type polyoxometalates (POMs). Dendrimers incorporating 10–30 POMs were characterized with NMR, transmission electron microscopy, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry techniques. The number of metal clusters per dendrimer molecule varied according to the dendrimer generation and the nature of the surface functional groups. Efforts aimed at using the poly(polyoxometalate) dendrimers as oxidation catalysts are also described. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3059–3066, 2005  相似文献   

7.
The local dynamics of three poly(propylene imine) dendrimers with hydrophilic triethylenoxy methyl ether terminal groups were studied in D2O by the measurement of the 1H NMR relaxation times, which were treated with the Lipari–Szabo model‐free approach. The results showed that the overall mobility increased with temperature and decreased with increasing dendrimer size. An Arrhenius trend was observed for both overall and local motions. The activation energy of overall tumbling increased from 11.3 to 17.5 kJ/mol with the dendrimer size. The local mobility decreased from the outer part to the inner part of the dendrimer and with the dendrimer size. The spatial restriction of local motions decreased with increasing temperature up to 55 °C and remained constant above 55 °C. Local motions were more restricted when the dendrimer size increased. The results showed that the hydrophilic end groups of the dendrimers were located preferentially at the periphery of the molecules and were extended in the aqueous environment. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2969–2975, 2003  相似文献   

8.
Gn (n = 3, 4, and 5) poly(amidoamine) (PAMAM) dendrimers were synthesized and peripherally modified with photocleavable o‐nitrobenzyl (NB) groups by reacting o‐nitrobenzaldehyde with the terminal amine groups of PAMAM dendrimers, followed by reducing the imine to amine groups with NaBH4. The NB‐modified dendrimers, Gn‐NB (n = 3, 4, and 5), were characterized by nuclear magnetic resonance and fourier transform infrared spectroscopy. The results showed that the NB groups were successfully attached on the periphery of the dendrimers with near 100% grafting efficiency. Such a photosensitive NB shell could be cut off on irradiation with 365 nm ultraviolet (UV) light. The encapsulation and release of guest molecules, that is, salicylic acid (SA) and adriamycin (ADR), by Gn‐NB were explored. The encapsulation capability of these dendrimers was found to increase as the guest molecular size was decreased and have dependence on the generation of dendrimers as well. For both of SA and ADR, the average encapsulation numbers per dendrimer decreased in the order of G4‐NB > G5‐NB > G3‐NB, indicating that the fourth generation dendrimer was a better container for the guest molecules. The rate of SA release was found to be greater with UV irradiation than that without, suggesting that the NB‐shelled PAMMAM dendrimers could function as a molecular container/box with photoresponsive characteristics. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 551–557, 2010  相似文献   

9.
The development of a novel nucleophilic thio‐bromo “Click” reaction, specifically base‐mediated thioetherification of thioglycerol with α‐bromoesters, is reported. Combination of this thio‐bromo click reaction with subsequent acylation with 2‐bromopropionyl bromide provides an iterative two‐step divergent growth approach to the synthesis of a new class of poly(thioglycerol‐2‐propionate) (PTP) dendrimers. This approach is demonstrated in the rapid preparation of four generation (G1–G4) of PTP dendrimers with high‐structural fidelity. The isolated G1–G4 bromide‐terminated dendrimers can be used directly as dendritic macroinitiators for the synthesis of star‐polymers via SET‐LRP. Additionally, the intermediate hydroxy‐terminated dendrimers are analogs of other water‐soluble polyester and polyether dendrimers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3931–3939, 2009  相似文献   

10.
This article describes a divergent strategy to prepare dendrimer‐like macromolecules from vinyl monomers through a combination of atom transfer radical polymerization (ATRP) and click reaction. Firstly, star‐shaped polystyrene (PS) with three arms was prepared through ATRP of styrene starting from a three‐arm initiator. Next, the terminal bromides of the star‐shaped PS were substituted with azido groups. Afterwards, the azido‐terminated star‐shaped PS was reacted with propargyl 2,2‐bis((2′‐bromo‐2′‐methylpropanoyloxy)methyl)propionate (PBMP) via click reaction. Star‐shaped PS with six terminal bromide groups was afforded and served as the initiator for the polymerization of styrene to afford the second‐generation dendrimer‐like PS. Iterative process of the aforementioned sequence of reactions could allow the preparation of the third‐generation dendrimer‐like PS. When the second‐generation dendrimer‐like PS with 12 bromide groups used as an initiator for the polymerization of tert‐butyl acrylate, the third‐generation dendrimer‐like block copolymer with a PS core and a poly (tert‐butyl acrylate) (PtBA) corona was afforded. Subsequently PtBA segments were selectively hydrolyzed with hydrochloric acid, resulting an amphiphilic branched copolymer with inner dendritic PS and outer linear poly(acrylic acid) (PAA). Following the same polymerization procedures, the dendrimer‐like PS and PS‐block‐PtBA copolymers of second generation originating from six‐arm initiator were also synthesized. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3330–3341, 2007  相似文献   

11.
Alkene and alkyne functional polyester‐based dendrimers of generation 1 to 4 have been prepared and reacted under free‐radical conditions with 2‐acetamido‐2‐deoxy‐1‐thio‐β‐D ‐glucose (GlcNAc‐SH). As the alkene‐dendrimers underwent the addition of one thiyl radical per ene group whereas each yne group of alkyne‐dendrimers was saturated by two thiyl radicals, a collection of glycodendrimers with glycan density ranging from six to ninety‐six GlcNAc per dendrimer was obtained. The recognition properties of the prepared glycodendrimers toward the wheat germ agglutinin (WGA) were evaluated by enzyme‐linked lectin assay (ELLA). The eight glycodendrimers were excellent ligands showing IC50 values in the nanomolar range and relative potencies per sugar unit up to 2.27 e6 when compared to monosaccharidic GlcNAc used as monovalent reference. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2422–2433  相似文献   

12.
General, fast, efficient, and inexpensive methods for the synthesis of poly (amido amine) (PAMAM) dendrimers having core diversities were elaborated. In all syntheses, the major step involved an inexpensive 1,3‐dipolar cycloaddition reaction between an alkyne and an azide in the presence of Cu(I) species, which is known as the best example of click chemistry. The propargyl‐functionalized PAMAM dendrons are obtained by the divergent approach using propargylamine as an alkyne‐focal point. Three core building blocks, 1,3,5‐tris(azidomethyl)benzene, N,N,N′,N′‐tetra(azidopropylamidoethyl)‐1,2‐diaminoethane, and 4,4′‐(3,5‐bis(azidopropyloxy)benzyloxy)bisphenyl, were designed and synthesized to serve as the azide functionalities for dendrimer growth via click reactions with the alkyne‐dendrons. These three building blocks were employed together with the propargyl‐functionalized PAMAM dendrons in a convergent strategy to synthesize three kinds of PAMAM dendrimers with different core units. This novel and pivotal strategy using an efficient click methodology provides the fast and efficient synthesis of the PAMAM dendrimers with the tailed made core units. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1083–1097, 2008  相似文献   

13.
Fourth and fifth generation poly(propylene imine) dendrimers and methyl and benzyl functionalized copolymers of these dendrimers are solution blended with poly(vinyl chloride) (PVC). The methyl‐derivative copolymer is observed to be dispersed in PVC as judged by optical and dynamic scanning calorimetry measurements. This dispersion leads to a substantial reduction in the glass transition temperature and a commensurate plasticization effect, demonstrating that functionalized dendrimer copolymers can successfully plasticize semicrystalline polymers. This plasticization is thought to occur as a result of additional free volume from the highly branched structure of the dendrimer. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1970–1975, 2007  相似文献   

14.
Water‐soluble guest–host complexes are prepared in a two‐step process. For this a new, polydisperse ethylene glycol containing guest molecule is synthesized that is soluble in both chloroform and water. This guest is able to bind to urea–adamantyl‐modified poly(propylene imine) dendrimers in chloroform in a noncovalent manner. When the chloroform is slowly evaporated and D2O is added, the hydrophobic dendrimer is solubilized in water. This is not possible when the hydrophobic dendrimer is directly added to the hydrophilic guests in water. When the unmodified poly(ethylene glycol) starting material is used, no solubilization occurs, and this indicates that the urea–acetic acid head group is necessary to solubilize the dendrimer. Approximately 26 guests are required for solubilization of the dendrimer. A lower number of guests results in aggregation and precipitation of the dendrimer. A monodisperse guest molecule has been used in NMR studies to show that the guest molecule binds with its acidic head group to the periphery of the dendrimer. This methodology opens the way to functional dendrimer aggregates in aqueous media. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6431–6437, 2005  相似文献   

15.
Ester‐terminated polyamide dendrimers up to the third generation and amide‐terminated polyamide dendrimers of the first generation were synthesized by convergent growth. The Williamson ether synthesis and diphenylphosphoryl azide (DPPA) coupling of amines to carboxylic acids were used for the construction of the dendrimers, having alternate ether and amide generations. The methyl ester‐ and N,N‐diethylamide‐terminated dendrimers were readily soluble in common organic solvents while the N‐methylamide‐ and N‐benzylamide‐terminated dendrimers were soluble only in DMF and DMSO. Both the end and internal amide groups of the N,N‐diethylamide‐terminated dendrimer were reduced by LiAlH4 to form a polyamine dendrimer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1533–1543, 2000  相似文献   

16.
Three sets of aliphatic polyester dendrimers based on 2,2‐bis(methylol)propionic acid (bis‐MPA) were synthesized. Two of the sets had benzylidene terminal groups and either a trimethylolpropane or triphenolic core moiety. The last set had acetonide terminal groups and a triphenolic core moiety. Benzylidene‐[G#1]‐anhydride and acetonide‐[G#1]‐anhydride were used as the reactive building blocks in the construction of all dendrimers. The large excess of building blocks used in the coupling reactions initially resulted in considerable material loss. This waste was eliminated through the development of a recycling method. 1H and 13C NMR and matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) analysis were used to verify the purity of all compounds. Size exclusion chromatography (SEC) was used, as well as MALDI‐TOF, for molecular weight determinations. The SEC measurements were conducted with a universal calibration method and an online right‐angle laser light scattering detector. Measured dendrimer molecular weights were close to their theoretical molar masses. Observations were also made of the hydrodynamic radius and intrinsic viscosity for the different dendrimers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1758–1767, 2004  相似文献   

17.
Amphiphilic poly(amidoamine) (PAMAM) dendrimers consisting of a hydrophilic dendrimer core and hydrophobic aromatic dansyl or 1‐(naphthalenyl)‐2‐phenyldiazene (NPD) shells have been synthesized. These amphiphilic dendrimers from the zero generation to the third generation self‐assemble into vesicular aggregates in water. The self‐assembly behavior of these dendrimers strongly depends on their generations. The generation dependence has been further investigated by an exploration of their electrochemical properties. For the PAMAM–NPD aggregates, the photoisomerization process leads to a change in the aggregate size. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5512–5519, 2005  相似文献   

18.
A mean‐field model for charged dendrimers has been elaborated and applied to Astramol dendrimers of 5th generation in salt‐free solution. The free energy of a dendrimer molecule was minimized with respect to the dendrimer size and to the profile of counterion distribution. The model of highly stretched freely jointed chain was used to describe the elasticity of long branches, the dissociated groups were assumed to be localized mostly on the periphery of the molecule, and the electrostatic interactions were described in the Poisson‐Boltzmann approximation. It was found that the osmotic pressure of counterions leads to moderate expansion of dendrimer molecules upon charging, and a significant fraction of counterions is localized within the dendrimer molecule under typical experimental conditions.

The schematic structure of poly(propylene imine) dendrimers for the 4th generation.  相似文献   


19.
New deep‐red light‐emitting phosphorescent dendrimers with hole‐transporting carbazole dendrons were synthesized by reacting tris(2‐benzo[b]thiophen‐2‐yl‐pyridyl) iridium (III) complex with carbazolyl dendrons by DCC‐catalyzed esterification. The resulting first‐, second‐, and third‐generation dendrimers were found to be highly efficient as solution‐processable emitting materials and for use in host‐free electrophosphorescent light‐emitting diodes. We fabricated a host‐free dendrimer EL device with configuration ITO/PEDOT:PSS (40 nm)/dendrimer (55 nm)/BCP (10 nm)/Alq3 (40 nm)/LiF (1 nm)/Al (100 nm) and characterized the device performance. The multilayered devices showed luminance of 561 cd/m2 at 383.4 mA/cm2 (12 V) for 15 , 1302 cd/m2 at 321.3 mA/cm2 (14 V) for 16 , and 422 cd/m2 at 94.4 mA/cm2 (18 V) for 17 . The third‐generation dendrimer, 17 (ηext = 6.12% at 7.5 V), showed the highest external quantum efficiency (EQE) with an increase in the density of the light‐harvesting carbazole dendron. Three dendrimers exhibited considerably pure deep‐red emission with CIE 1931 (Commission International de L'Eclairage) chromaticity coordinates of x = 0.70, y = 0.30. The CIE coordinates remained very stable with the current density. The integration of rigid hole‐transporting dendrons and phosphorescent complexes provides a new route to design highly efficient solution‐processable materials for dendrimer light‐emitting diode (DLED) applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7517–7533, 2008  相似文献   

20.
Functional poly(diene sulfone)s are prepared by the radical alternating copolymerization of 1,3‐diene monomers containing an ester substituent with sulfur dioxide. Methyl 3,5‐hexadienoate (MH) and methyl 5,7‐octadienoate (MO) with both an alkylene spacer and a terminal diene structure are suitable to produce a high‐molecular‐weight copolymer in a high yield, while the copolymerization of 5,7‐nonadienoic acid, ethyl 2,4‐pentadienoate, and ethyl 4‐methyl‐2,4‐pentadienoate including either an alkylene spacer or a terminal diene structure lead to unsuccessful results. The 13C NMR chemical shift values of MH and MO suggest a high electron density at their reacting α‐carbon for exhibiting a high copolymerization reactivity. Fluorene‐containing diene monomers, 9‐fluorenyl 3,5‐hexadienoate (FH) and 9‐fluorenyl 5,7‐octadienoate (FO), are also prepared and copolymerized with sulfur dioxide. The thermal and optical properties of the poly(diene sulfone)s containing the methyl and fluorenyl ester substituents in the side chain are investigated. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1000–1009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号