首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 656 毫秒
1.
智能泵在正常工作中,会受到计算机指令的控制,还会受到负载变化对其产生的干扰。智能泵随指令和负载调节工作状态是其性能的关键,要评估和提高该性能必须弄清楚智能泵的整个调节过程。对机载液压系统进行了整体分析,研究了负载作用于智能泵的原理,在AMESim软件中用外力和节流作用模拟负载,对智能泵的工作过程进行了仿真。仿真结果表明:智能泵对指令和负载作用的变化有良好的调节效果,由这两种调节效果可以方便地评估出智能泵性能的优劣,为提高其性能打下了基础。  相似文献   

2.
刘伟 《机床与液压》2019,47(14):84-87
发动机-液压系统极限载荷控制是一种根据负载变化自动调节变量泵液压系统的智能电液控制技术。介绍极限载荷控制原理与策略,分析极限载荷控制中传统负载敏感和LUDV负载敏感系统流量调节原理与特性。以起重机卷扬系统为研究对象,试验验证了传统负载敏感系统极限载荷控制流量调节特性,为优化发动机-液压系统极限载荷控制策略提供参考。  相似文献   

3.
高压、大功率是飞机液压系统的一个发展趋势,而目前飞机液压系统采用的恒压泵源必然导致系统发热功率大且散热困难等问题.因此,能够实时根据负载进行压力或流量自动调节的智能泵系统将会得到广泛的使用.对智能液压泵的控制策略进行研究,介绍机载智能液压泵系统的结构及数学模型,提出一种基于PID的控制算法,并采用MATLAB软件对控制算法进行建模及仿真,验证控制算法的可行性.  相似文献   

4.
负载敏感控制在液压钻机中的应用   总被引:2,自引:0,他引:2  
周雄  朱新才  李良 《机床与液压》2007,35(8):129-130
研究并设计了基于负载敏感的钻机液压系统,该液压系统最大限度利用了电动机的功率;其动力头的速度控制与负载无关,可根据工艺要求在调节范围内调节;系统可以LS卸荷,安全性高;避免溢流的发生.用恒功率、压力切断、负载敏感控制泵和比例多路换向阀组成钻机的液压系统,其效率高,安全性能好.  相似文献   

5.
针对传统液压助力转向系统的压力和流量损失问题,设计了基于负载敏感技术的液压助力转向系统。基于仿真软件AMESim对负载敏感泵和液压助力转向系统进行了建模。仿真结果表明:当在直线行驶工况下,该系统以低压、小流量的待机状态输出;当有转向需求时,系统能根据转阀开启阀度,快速调节泵出口的压力和流量,并且能够满足助力需求。基于负载敏感技术的液压助力转向系统在车辆行驶过程中能减小能量消耗,达到节能的目的。  相似文献   

6.
军用飞机向高速、高机动性方向的发展,对飞机液压系统提出了高压、大功率的要求。为了尽可能减小系统无效功耗带来的发热量,国内外已经提出了在军用飞机上采用新型智能泵源系统的方案。本文在分析国内外相关研究状况的基础上,根据国内目前的进展论述了研究机载智能泵源系统研究中涉及的关键技术。  相似文献   

7.
陈明东 《机床与液压》2018,46(11):119-122
为降低液压挖掘机整机能耗,提出一种以蓄能器为储能装置的液压挖掘机动臂闭式回路势能回收系统。以80k N级液压挖掘机为研究对象,基于系统工作原理,建立了能量回收系统电动机-泵/马达轴系力矩平衡模型,分析了蓄能器平均工作压力与负载压力的关系。结果表明:电动机-泵/马达轴系在电动机无功率输出工况力矩平衡时,液压蓄能器工作压力平均值约为动臂负载压力的2倍。并结合半载工况挖掘机动臂下降试验,确定8吨级液压挖掘机蓄能器最小和最大工作压力分别为16.04 MPa和19.56 MPa。  相似文献   

8.
高波  侯昊 《机床与液压》2022,50(10):154-159
针对传统单泵式液压传动风力发电系统在复杂工况时常处于欠功率运行的状态,从而使整个机组工作效率较低的现象,提出一种基于风速-压力反馈的数字式多泵液压传动系统。根据不同风速状态得到相应管路压力,并根据压力状态控制液压泵的切入个数,从而使多泵系统可以快速响应系统状态变化,最大化地将风能转化为电能,以提高系统效率。通过在多泵系统与液压马达之间接入由电磁开关阀控制的蓄能系统,辅助多泵系统工作,提供瞬态的蓄能供能作用,以短时间内抑制液压管路能量波动,提高系统运行的安全性和稳定性;通过AMESim/Simulink进行仿真。结果表明:所设计的多泵蓄能系统可以适应复杂风速工况运行,工作效率比传统单泵系统更高且更稳定。  相似文献   

9.
针对粉末压机压制频次高、能耗高、液压系统发热严重等问题,提出采用伺服泵组、大通径伺服阀及压力补偿等环节实现2.8 MN粉末压机液压系统的节能控制。利用AMESim软件搭建比例流量插装阀和伺服阀仿真模型,通过仿真验证模型的正确性;搭建2.8 MN粉末压机液压系统仿真模型,研究伺服泵组节能控制、伺服阀及压力补偿控制对液压系统功耗的影响。结果表明:采用伺服泵组节能控制可以有效降低压机待机阶段的液压系统功耗;采用伺服阀及压力补偿控制可实现压机工作阶段泵出口压力随负载变化而变化,有效降低泵出口压力和液压系统功耗。  相似文献   

10.
朱小明  徐攀  杨丽红 《机床与液压》2021,49(24):114-118
重载设备对较大负载的驱动及分度,在机械工程领域有着极其重要的作用.根据使用要求,应用现代设计方法,建立液压重载快速等分转筒模型,使用动力学仿真软件完成运动学分析.设计液压重载快速等分转筒的液压系统,搭建其仿真模型,并对该模型进行仿真分析.结果表明:该泵控马达液压系统可以根据负载的变化对马达转速及压力进行相应调节.  相似文献   

11.
针对航空地面液压保障装备模拟训练和检测需求,设计一种基于可编程控制器的液压负载试验台,根据其液压系统和电气控制系统的要求,编写梯形图实现对航空地面液压保障装备的液压系统进行密封试验和持续工作时间试验。试验结果表明:该负载试验台工作可靠,满足使用要求。  相似文献   

12.
为了提取某型航空发动机带动液压泵的机械功率,通过分析航空发动机液压负载系统现状,结合被试对象和试飞平台设计研制了某型航空发动机液压负载系统,详细阐述了该系统的工作原理,并进行了换热计算、管路压力损失计算、集成安装设计等。经地面调试和飞行试验验证,结果表明:系统集成度高、换热效果好、维护性好,能够满足该型航空发动机液压泵机械功率的提取要求。  相似文献   

13.
飞机液压能源系统是支持飞机主飞控系统、高升力系统以及起落架等关键系统正常工作的核心动力来源,其系统效能是飞机液压能源系统的一个重要设计指标。针对目前飞机液压能源系统的效能分析缺乏完善且有效的方法,设计一种基于分布式仿真的效能分析方法。结合系统工作原理,运用AMESim建立液压能源系统分布式仿真模型,在考虑全飞行过程液压能源系统加载负载工作情况下,对液压能源系统效能与关键指标的关系进行研究,建立了三层两级效能评估指标体系,并验证了指标体系的有效性。运用熵权法对效能指标进行相对权重分析,采用扩展贝叶斯融合算法对飞机全飞行过程中的液压能源系统负载在环的部件级效能和系统综合效能进行了研究。最后以某航班真实飞行任务数据为例,验证了效能分析方法的正确性。  相似文献   

14.
为了解决变量泵负载敏感系统稳定性偏低问题,解决姿态调整机构效率低、精度低、可操作性差等问题,设计基于负载敏感原理的特种车液压动力系统。介绍系统工作原理,并对液压系统主要元件进行设计计算与选型。选择比例变量泵做动力源,提高了液压动力系统的传动效率、稳定性、调节精度、可操作性等综合性能。  相似文献   

15.
针对多台负载敏感泵液压系统,为了解决没有流量输出、输出流量达不到理论计算的问题,通过对恒功率负载敏感泵原理的分析,调试设备进行试验,利用AMESim软件仿真模拟验证等方法和相应实践措施,解决多泵系统在实际应用过程中,因为泵的偏置弹簧力设定值不同以及泵出口固定阻尼的大小不同造成系统的流量、压力异常等问题;通过不同参数的模拟仿真结果,提高调试的效率。  相似文献   

16.
针对液压旋耕机工作装置设计一套电液式定量泵负载敏感系统,相比较传统定流量负载敏感系统,采用永磁同步电机与定量泵结合替换三通压力补偿阀。给出液压系统原理图及系统控制框图,并搭建数学模型分析其控制策略,通过AMESim搭建系统仿真模型,仿真分析旋耕机工作装置各执行机构单独工作、复合动作时的功率曲线与能量曲线,分析系统的能耗情况。结果表明:该系统通过永磁同步电机动态地调节定量泵输出的流量,使定量泵输出功率跟随负载变化,从而减少系统的溢流损失,增加了旋耕机工作装置的能量利用率,提高系统的节能效果。  相似文献   

17.
为了提高全液压车载反循环工程钻机钻进工艺性能,设计了GF1500全液压车载反循环工程钻机液压系统。该液压系统实现了动力头钻杆回转速度及泥浆泵工作速度无级调速、动力头进给速度和进给压力实时调控,泥浆泵送液压控制系统输出转速和转矩根据需要调节,满足各种钻进工况要求。现场工业性试验结果表明:该液压系统设计合理、高效节能、控制简便,且具有良好的机动性。  相似文献   

18.
液压柱塞泵的功率控制阀,可使泵在输入转速不变的条件下,达到功率起调点后随着液压系统压力的增大自动降低泵排量,且保证泵的输出功率基本恒定。在抛沙灭火车液压系统中应用功率阀可满足抛沙灭火车的工况需求,在堵料或带载启动的情况下降低泵排量、提高液压系统的输出扭矩将物料排出,在正常工况下以较大的泵排量进行物料抛撒,提高抛撒距离和抛撒量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号