首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用密度泛函理论的M06-2X方法,结合自洽反应场理论的SMD模型方法,研究了水液相下两性S型α-丙氨酸与一价钾离子配合物(S-α-Ala·K~+)的旋光异构.反应通道研究发现:S-α-Ala·K~+旋光异构反应有a、b和c 3个通道,a是质子只以羰基氧为桥迁移;b是α-氢迁移到羰基氧后,质子再从质子化氨基向α-碳迁移;c是质子从质子化氨基迁移到羰基氧后,再以氨基氮为桥迁移.势能面计算表明:隐性溶剂效应下,c通道具有优势,决速步能垒是241.7 kJ·mol ~1;1和b通道为劣势通道,具有共同的决速步能垒261.3 kJ·mol ~1.显性溶剂效应下,a、b和c 3个通道的决速步能垒基本相同,大约在136.6至142.0 kJ·mol ~1之间.结果表明:水液相下S-α-Ala·K~+的旋光异构反应进行的极其缓慢,生命体利用S-α-Ala·K~+同补K~+和丙氨酸具有较好的安全性.  相似文献   

2.
采用密度泛函理论的M06方法研究了Na~+催化丙氨酸(Ala)分子的手性对映体转变.反应通道研究发现:Ala_1(Ala的稳定构型1)的手性转变有a、b、c和d 4个通道,a通道是羧羟基氢迁移后α-氢以羰基氧为桥迁移,b通道是羧羟基氢迁移后α-氢向羰基氧迁移再接质子从质子化氨基向α-碳迁移,c和d通道是α-氢分别以氨基氮和羰基氧为桥迁移.Ala_2(Ala的稳定构型2)的手性转变有2个通道a和b,a通道是α-氢只以羰基氧为桥迁移,b通道是α-氢迁移到羰基氧后氨基上的质子再向α-碳迁移.势能面计算结果表明:Ala_1手性转变的a和b通道具有优势,反应的总包能垒(反应活化能)是125.4kJ·mol~(-1).Ala_2手性转变的a通道具有优势,反应的总包能垒(反应活化能)是200.0kJ·mol~(-1).结果表明:气相环境下Na~+的催化可显著地降低Ala实现手性转变的能垒.  相似文献   

3.
采用基于密度泛函理论的B3LYP-D3方法和从头算的MP2方法,在MP2/6-311++G(2df,2pd)∥B3LYP-D3/6-31+G(d,p)双水平下对气相丝氨酸分子的旋光异构进行研究.对反应通道的研究表明:气相丝氨酸分子的旋光异构反应有a、b、c、d、e和f 6个通道,a和b通道是羧羟基旋转接着羧基内质子转移后(b通道还要经过R-基上的羟基旋转异构)α-氢以氨基氮为桥梁转移,c和e通道是羧羟基旋转后α-氢分别以氨基氮和羰基氧为桥梁转移,d通道是α-氢直接以氨基氮为桥梁转移,f通道是α-氢以羰基氧和氨基氮联合为桥梁转移.对势能面的计算显示:a和b通道具有优势,这2个通道的决速步能垒分别是247.37和249.29kJ/mol.结果表明孤立的丝氨酸分子很难旋光异构.  相似文献   

4.
用量子力学与分子力学组合的ONIOM方法,结合自洽反应场(SCRF)理论的SMD模型方法,对标题反应进行理论研究。研究发现:标题反应有a和b两个反应通道,a通道是羟自由基水分子簇等与α-H和氨基氮通过氢键作用形成底物,b通道是羟自由基水分子簇与α-H和羰基氧通过氢键作用形成底物。势能面计算表明:羟自由基水分子簇组合作质子转移媒介,水分子拔α-H使α-Ala旋光异构,水汽相环境下,a通道具有优势,决速步能垒是136.1 kJ/mol;水液相环境下,优势反应通道是b,过渡态产生的内禀能垒是78.1 kJ/mol。水分子辅助羟自由基抽α-H致α-Ala损伤的优势通道是a,决速步能垒是25.3 kJ/mol,水溶剂效应使该能垒降到22.1 kJ/mol。结果表明:水环境下羟自由基的存在可使MOR分子筛内的α-Ala旋光异构与损伤同时发生,在竞争中损伤过程具有明显的优势;MOR分子筛的限域改变了α-Ala的异构机理并起到了较好助催化作用。  相似文献   

5.
在MP2/6-311++G(2df,pd)∥B3LYP/6-31+G(d,p)双理论水平,研究了氢氧根水分子团簇催化2种稳定构象的赖氨酸分子旋光异构及羟基自由基致其损伤的机理。反应通道研究发现:赖氨酸旋光异构有2个通道a与b,a是氢氧根水分子团簇与α-氢和氨基氮通过氢键作用形成底物,氢氧根拔α-氢,然后α-碳再拔另一侧2个水分子簇的氢;b是氢氧根水分子团簇与α-氢和羰基氧通过氢键作用形成底物,氢氧根拔α-氢,而后α-碳再拔另一侧2个水分子簇的氢。羟自由基拔氢致赖氨酸损伤可在b通道实现。势能面计算表明:水液相环境下,构象1(氨基羧基间为单氢键)和构象2(氨基羧基间为双氢键)旋光异构的优势通道均为b,决速步能垒分别是49.94和60.41 k J·mol~(-1),羟自由基在b通道致构象1和2赖氨酸分子的损伤为低或无势垒放热反应。  相似文献   

6.
用量子力学与分子力学组合的ONIOM方法结合自洽反应场(SCRF)理论的smd模型方法,对标题反应进行理论研究.研究发现:水环境下限域在MOR分子筛内的α-丙氨酸可以在3个反应通道实现旋光异构,分别是质子α-氢以氨基氮、顺次以羰基氧与氨基氮和只以羰基氧为桥,从α-碳的一侧迁移到另一侧.计算表明:质子以氨基氮为桥转移的通道具有绝对优势,α-氢从α-碳向氨基氮的迁移是决速步骤;水溶剂环境下2个和3个水分子簇做α-氢迁移媒介以及分子筛的限域作用,使决速步的吉布斯自由能垒从裸反应的266.1kJ·mol~(-1)降为116.1和111.2kJ·mol~(-1),也比只在水环境下的138.6和122.5kJ·mol~(-1)显著降低.结果表明:水环境下MOR分子筛对α-丙氨酸的旋光异构具有较好的限域助催化作用,水与MOR分子筛的复合环境可作为α-丙氨酸旋光异构反应的纳米反应器.  相似文献   

7.
在MP2/6-311++G(2df,pd)//B3LYP/6-31+G(d,p)双理论水平,采用自洽反应场(SCRF)理论的smd模型方法,对标题反应进行了研究。反应通道研究表明:水环境下缬氨酸的旋光异构可以在3个通道a、b和c实现,分别是质子以水分子簇为媒介以氨基氮、羰基氧和羧基为桥梁,从α-碳的一侧迁移到另一侧;水分子辅助羟自由基抽氢致缬氨酸损伤发生在a通道。势能面计算表明:2个和3个水分子簇作氢迁移媒介时,水分子簇对旋光异构反应的氢迁移过程有极好的催化作用,使反应能垒相对裸反应大幅降低,水溶剂效应在a通道有较好的助催化作用,对b和c通道影响不大。水分子辅助羟自由基抽氢致缬氨酸损伤气相反应能垒较低,水溶剂效应对此反应有较大的阻碍作用。  相似文献   

8.
采用组合量子化学ONIOM方法,基于氨基作为氢迁移桥梁,考察单壁碳纳米管(SWCNT)与水复合环境下α-丙氨酸分子(α-Ala)的手性转变机理.结果表明:基于氨基作为氢迁移桥梁的手性转变反应有a和b两个通道,其中通道a最具优势;水与扶手椅型SWCNT复合环境对氢迁移反应具有较好的催化作用;在SWCNT(8,8)的限域环境下,3个水分子构成的链使主反应通道的决速步骤能垒从裸反应的266.1kJ/mol降至117.8kJ/mol.表明SWCNT(8,8)与水构成的复合环境可作为实现α-Ala手性转变的理想纳米反应器,生命体内α-Ala分子可在类似的纳米环境实现旋光异构.  相似文献   

9.
采用密度泛函理论的B3LYP方法,微扰理论的MP2方法及自洽反应场(SCRF)理论的SMD模型方法,研究气相S-异亮氨酸向R-别异亮氨酸的旋光异构机理及水溶剂化效应.结果表明:该反应有a,b,c 3个通道,在通道a和c实现旋光异构反应需经过3个基元反应,在通道b实现旋光异构反应需经过4个基元反应;a为主反应通道,决速步骤Gibbs自由能垒为255.0kJ/mol,由质子从α手性C向氨基N迁移的过渡态产生,决速步骤的反应速率常数为1.25×10-32 s~(-1);水溶剂效应使决速步骤能垒降至114.1kJ/mol,反应速率常数增至2.73×10-7 s~(-1),即水环境对S-异亮氨酸旋光异构具有较好的催化作用.  相似文献   

10.
采用量子力学与分子力学相结合的ONIOM(MP2/6-311++G(3df,3pd):UFF)//ONIOM(B3LYP/6-31+G(d,p):UFF)方法,研究α-Ala分子在SWBNNT(10,5)与水复合环境下基于氨基作为H转移桥梁的手性转变机制.结果表明:手性转变反应有2个通道a和b,反应通道a以氨基作为H转移桥梁,反应通道b依次以羰基和氨基作为H转移桥梁,H迁移能以1个或2个H2O分子为媒介实现;a通道的最高能垒来自H从手性碳向氨基转移的过渡态,以2个H2O分子作为H转移媒介时,高能垒降为126.5kJ/mol,远小于单体在a通道的能垒266.1kJ/mol;b通道的最高能垒来自H从手性碳向羰基转移的过渡态,以2个H2O分子作为氢转移媒介时,高能垒降为155.6kJ/mol,远小于单体在b通道的能垒319.9kJ/mol.即SWBNNT(10,5)与水复合环境对α-Ala分子的手性转变反应过程具有较好的催化作用.  相似文献   

11.
基于MP2/6-311++G(2df,pd)//B3LYP/6-31+G(d,p)双理论水平, 用自洽反应场(SCRF)理论的SMD模型方法, 考察水环境下氢氧根水分子簇催化缬氨酸旋光异构及羟自由基致其损伤机理. 结果表明: 缬氨酸的旋光异构可在2个通道a和b实现, 通道a为氢氧根水分子簇与α-H和氨基通过氢键作用形成底物, 氢氧根抽取α-H后, α-C在另一侧抽取水分子的H; 通道b为氢氧根水分子簇与α-H和羰基通过氢键作用形成底物, 氢氧根抽取α-H后, α-C在另一侧抽取水分子的H, 通道b中的水分子辅助羟自由基抽取α-H可致缬氨酸损伤; 水液相环境下, 构象Val-1(氨基羧基间为单氢键)和构象Val-2(氨基羧基间为双氢键)在通道a旋光异构的决速步骤能垒分别为60.57,65.24 kJ/mol, 在通道b旋光异构的决速步骤能垒分别为56.76,64.11 kJ/mol, 羟自由基水分子簇致缬氨酸在通道b的损伤为温和的放热反应.  相似文献   

12.
采用密度泛函理论的B3LYP方法和微扰理论的MP2方法,对苯丙氨酸分子的3种最稳定构型基于氨基做质子迁移桥梁的旋光异构进行研究.反应通道研究发现:标题反应有3条通道a、b和c.对于构型1和3,a是羧基异构后手性碳上的质子再以氨基为桥迁移,b是手性碳上的质子直接以氨基为桥迁移,c是手性碳上的质子以羧基和氨基联合为桥迁移.对于构型2,3条通道分别是质子只以氨基、顺次以羰基与氨基和顺次以羧基和氨基为桥迁移;势能面计算表明:构型1,3的主反应通道都是a,决速步是第2基元反应,活化吉布斯自由能垒分别为256.7kJ·mol~(-1)和263.4kJ·mol~(-1),由羧基异构后质子从手性碳向氨基氮迁移的过渡态产生.构型2的主反应通道也是a,决速步是第1基元反应,活化吉布斯自由能垒为256.5kJ·mol~(-1),由质子从手性碳向氨基氮迁移的过渡态产生;3种构型的苯丙氨酸分子旋光异构速控步骤的反应速率常数分别为6.27×10-33 s~(-1),6.79×10-33s~(-1)和4.20×10-34s~(-1).  相似文献   

13.
采用量子化学ONIOM(B3LYP/6-31+G(d,p):UFF)方法,研究了限域在SWCNT(9,9)与水复合环境下α-Ala的手性转变机理.反应通道研究发现:α-Ala在SWCNT(9,9)与水复合环境下有两个手性转变通道,一是手性碳上的氢以水分子为桥梁直接转移到羰基氧上,再经过一系列过程完成手性转变;二是氢先在羧基内以水分子为桥梁转移,而后手性碳上的氢以水分子为桥梁转移到羰基氧上,再经过一系列过程完成手性转变.反应过程势能面计算发现:S型α-Ala在SWCNT(9,9)内分别以1个和2个水分子作为桥梁实现氢转移,最高能垒都来自氢从手性碳转移到羰基氧的过渡态.与单体情形相比较,在第一通道最高能垒从326.5kJ·mol-1降到192.2和164.5kJ·mol-1,在第二通道最高能垒从320.3kJ·mol-1降到175.5和154.3kJ·mol-1.结果表明SWCNT(9,9)与水的复合环境对α-Ala手性转变过程的限域影响,是使氢转移反应的能垒比单体和只限域在SWCNT(9,9)的情形明显降低,且比单纯水环境下也有所降低.  相似文献   

14.
该文采用DFT的M06-2X和MN15方法结合极化介质的SMD模型,研究了在水液相下两性赖氨酸分子2价钙配合物(Lys·Ca(II))的旋光异构.反应通道研究发现:Lys·Ca(II)的旋光异构可在Lys从两性异构为中性后,α-H以氨基N作桥和羰基O作桥迁移的2个通道上实现.势能面计算结果表明:,α-H以氨基N作桥的反应通道最具优势,在隐性水溶剂效应下决速步能垒为220.8 kJ·mol-1,α-H从手性C向氨基N迁移的过渡态在显性水溶剂效应下的能垒降至120.5 kJ·mol-1左右.研究结果表明:在水液相下手性Lys·Ca(II)的消旋过程十分缓慢,其用于生命体同补Lys和Ca(II)具有较好的安全性.  相似文献   

15.
采用密度泛函理论的B3LYP方法和微扰理论的MP2方法,研究两种最稳定构型的蛋氨酸分子(Met)基于氨基作为质子迁移桥梁的旋光异构反应.结果表明:基于氨基作为质子迁移桥梁的蛋氨酸分子旋光异构反应有2条通道a和b;构型1的主反应通道为通道a,决速步骤为第1基元反应,自由能垒为264.2kJ/mol,由质子从手性C直接向氨基N迁移的过渡态产生;构型2的主反应通道也为通道a,决速步骤为第2基元反应,自由能垒为266.1kJ/mol,由羧基异构后质子从手性C向氨基N迁移的过渡态产生;两种构型的Met分子旋光异构速控步骤的反应速率常数分别为3.04×10~(-34),1.41×10~(-34) s~(-1).  相似文献   

16.
采用基于密度泛函理论的B3LYP方法和微扰理论的MP2方法,研究了布洛芬分子手性转变裸反应和水助质子从手性碳向羰基迁移的机理。分子结构分析表明:水助质子从手性碳向羰基迁移过程的8元环过渡态b TS2·2H_2O和10元环过渡态b TS2·3H_2O对应的氢键键角都远大于6元环过渡态b TS2·1H_2O;过渡态b TS2·2H2O的8元环结构基本共面,过渡态a_TS1·3H_2O和b TS2·3H_2O的10元环结构明显偏离平面。反应路径研究发现:标题反应有6条路径,分别是质子只以羰基氧、以甲基碳和羰基O及以羧基和苯环联合作桥,从手性C的一侧迁移到另一侧。势能面计算表明:质子以羧基和苯环联合作桥迁移的路径为优势反应路径,裸反应的决速步吉布斯自由能垒为287.1 k J·mol~(-1),2个水分子构成的链使决速步的吉布斯自由能垒降为144.9 k J·mol~(-1)。结果表明:布洛芬分子的手性转变存在多条可能的路径,水分子对布洛芬分子的H迁移异构反应有明显的催化作用,生命体内水分子的存在、温度的涨落、分子的频繁碰撞和某种酶的作用等综合因素,是导致左旋布洛芬旋光异构的原因。  相似文献   

17.
采用密度泛函理论的B3LYP方法、微扰理论的MP2方法和自洽反应场(SCRF)理论的smd模型方法,研究了标题反应.反应通道研究发现:标题反应有两个通道a和b,a是羧基顺反异构后质子以氨基为桥从手性碳的一侧迁移到另一侧;b是质子从手性碳向氨基的迁移与羧基顺反异构协同进行.势能面计算表明:a为优势通道,质子从手性碳向氨基迁移过程是决速步骤.2个水分子簇作氢迁移媒介,使决速步内禀能垒从裸反应的267.41kJ·mol-1降到131.77kJ·mol-1,水溶剂效应又使该能垒进一步降到107.83kJ·mol-1.羟自由基水分子链联合作用可使α-丙氨酸损伤,水分子拔氢和羟自由基拔氢的能垒分别是124.76和21.56kJ·mol-1,水溶剂效应使两个能垒进一步降到6.59和-186.99kJ·mol-1.结果表明:水溶剂环境下,α-丙氨酸分子可以缓慢地旋光异构;在浓度较大的水汽环境下,α-丙氨酸分子的旋光异构更容易进行.水汽环境下,羟自由基的存在可使α-丙氨酸分子损伤;水溶剂环境下,羟自由基的存在可使α-丙氨酸分子迅速损伤.  相似文献   

18.
用量子化学ONIOM(MP2/6-311++G(3df,3pd):UFF)//ONIOM(B3LYP/6-31+G(d,p):UFF)方法,研究了在SWBNNT(10,6)与水复合环境下α-Ala的手性转变.分子结构计算表明:在SWBNNT(10,6)和水复合环境的反应物S型α-Ala及中间体INT1与单体比较,实现氢转移要断的O-H和C-H键长略长,H与其要转移到的目标原子O的距离短很多.反应通道研究发现:在SWBNNT(10,6)与水复合环境的α-Ala手性转变反应有3条路径,氢转移都能以1个或2个H2O为媒介实现.势能面计算发现:手性转变过程中的最高能垒均来自H从手性C向羰基O转移的过渡态;在羧基内和从手性C向羰基O的H转移顺次实现的路径上,以2个H2O为氢转移媒介时最高能垒被降到最小,最小值为151.0 kJ·mol-1.比只在SWBNNT(9,9)内的302.7kJ·mol-1明显降低,比只在水环境的167.8kJ·mol-1也有所降低.研究还发现:氧自由基和氢氧根分别与水分子构成的链,使羧基内的H迁移变成了无势垒过程.结果表明:SWBNNT(10,6)与水的复合环境,对α-Ala实现手性转变具有较好的催化作用.  相似文献   

19.
采用密度泛函理论的B3LYP方法、微扰论的MP2方法和自洽反应场(SCRF)理论的smd模型方法,研究了天门冬酰胺分子2个稳定构型的旋光异构裸反应机理、水分子的催化作用及水溶剂化效应.反应通道研究发现:构型1有2条通道a和b,a通道的第一基元反应质子迁移与羧基异构同时进行,是协同机理;b通道羧基先异构而后质子迁移,是分步机理.构型2有1条通道,是质子先以氨基氮为桥从手性碳的一侧迁移到另一侧,然后羧基和氨基再异构.势能面计算表明:构型1的主反应通道是b,决速步自由能垒为252.7kJ·mol~(-1);构型2的决速步自由能垒为254.0kJ·mol~(-1),均来自于质子从手性碳向氨基氮迁移的过渡态.2个水分子作质子迁移媒介时,构型1主反应通道b的决速步能垒降到124.1kJ·mol~(-1),再考虑到水溶剂化效应时,决速步能垒降到104.0kJ·mol~(-1).结果表明:水分子的催化和水溶剂助催化的共同作用,使质子迁移反应能垒大幅度降低.  相似文献   

20.
采用量子力学与分子力学相结合的ONIOM(MP2/6-311++G(3-df,3pd): UFF)//ONIOM(B3LYP/6-31+G(d,p): UFF)方法, 研究α-Ala分子在SWBNNT(10,5)与水复合环境下基于氨基作为H转移桥梁的手性转变机制. 结果表明: 手性转变反应有2个通道a和b, 反应通道a以氨基作为H转移桥梁, 反应通道b依次以羰基和氨基作为H转移桥梁, H迁移能以1个或2个H2O分子为媒介实现; a通道的最高能垒来自H从手性碳向氨基转移的过渡态, 以2个H2O分子作为H转移媒介时, 高能垒降为126.5 kJ/mol, 远小于单体在a通道的能垒266.1 kJ/mol; b通道的最高能垒来自H从手性碳向羰基转移的过渡态, 以2个H2O分子作为氢转移媒介时, 高能垒降为155.6 kJ/mol, 远小于单体在b通道的能垒319.9 kJ/mol. 即SWBNNT(10,5)与水复合环境对α-Ala分子的手性转变反应过程具有较好的催化作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号