首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In sorghum (Sorghum bicolor [L.] Moench), the impact of heat stress during flowering on seed set is known, but mechanisms that lead to tolerance are not known. A diverse set of sorghum genotypes was tested under controlled environment and field conditions to ascertain the impact of heat stress on time-of-day of flowering, pollen viability, and ovarian tissue. A highly conserved early morning flowering was observed, wherein >90% of spikelets completed flowering within 30 min after dawn, both in inbreds and hybrids. A strong quantitative impact of heat stress was recorded before pollination (reduced pollen viability) and post pollination (reduced pollen tube growth and linear decline in fertility). Although viable pollen tube did reach the micropylar region, 100% spikelet sterility was recorded under 40/22°C (day/night temperatures), even in the tolerant genotype Macia. Heat stress induced significant damage to the ovarian tissue near the micropylar region, leading to highly condensed cytoplasmic contents and disintegrated nucleolus and nucleus in the susceptible genotype RTx430. Whereas, relatively less damages to ovarian cell organelles were observed in the tolerant genotype Macia under heat stress. Integrating higher tolerance in female reproductive organ will help in effective utilization of the early morning flowering mechanism to enhance sorghum productivity under current and future hotter climate.  相似文献   

2.
In future climates, rice could more frequently be subjected to simultaneous high temperature and water stress during sensitive developmental stages such as flowering. In this study, five rice genotypes were exposed to high temperature, water stress and combined high temperature and water stress during flowering to quantify their response through spikelet fertility. Microscopic analyses revealed significant differences in anther dehiscence between treatments and genotypes, with a moderately high association with the number of germinated pollen grains on the stigma. There was a strong relationship between spikelet fertility and the number of germinated pollen on stigmas. Although, all three stress treatments resulted in spikelet sterility, high-temperature stress caused the highest sterility in all five genotypes. A cumulative linear decline in spikelet fertility with increasing duration of independent high-temperature stress and in combination with water stress was quantified. Better anther dehiscence, higher in vivo pollen germination, and higher spikelet fertility were observed in both the N22 accessions compared with IR64, Apo and Moroberekan under high temperature, water stress and combined stress, indicating its ability to tolerate multiple abiotic stresses.  相似文献   

3.
Increasing temperatures resulting from climate change dramatically impact rice crop production in Asia. Depending on the specific stage of rice development, heat stress reduces tiller/panicle number, decreases grain number per plant and lower grain weight, thus negatively impacting yield formation. Hence improving rice crop tolerance to heat stress in terms of sustaining yield stability under high day temperature (HDT), high night temperature (HNT), or combined high day and night temperature (HDNT) will bolster future food security. In this review article, we highlight the phenological alterations caused by heat and the underlying molecular-physiological and genetic mechanisms operating under different types of heat conditions (HDT, HNT, and HDNT) to understand heat tolerance. Based on our synthesis of HDT, HNT, and HDNT effects on rice yield components, we outline future breeding strategies to contribute to sustained food security under climate change.  相似文献   

4.
High temperature stress and spikelet fertility in rice (Oryza sativa L.)   总被引:5,自引:0,他引:5  
In future climates, greater heat tolerance at anthesis will be required in rice. The effect of high temperature at anthesis on spikelet fertility was studied on IR64 (lowland indica) and Azucena (upland japonica) at 29.6 degrees C (control), 33.7 degrees C, and 36.2 degrees C tissue temperatures. The objectives of the study were to: (i) determine the effect of temperature on flowering pattern; (ii) examine the effect of time of day of spikelet anthesis relative to a high temperature episode on spikelet fertility; and (iii) study the interactions between duration of exposure and temperature on spikelet fertility. Plants were grown at 30/24 degrees C day/night temperature in a greenhouse and transferred to growth cabinets for the temperature treatments. Individual spikelets were marked with paint to relate fertility to the time of exposure to different temperatures and durations. In both genotypes the pattern of flowering was similar, and peak anthesis occurred between 10.30 h and 11.30 h at 29.2 degrees C, and about 45 min earlier at 36.2 degrees C. In IR64, high temperature increased the number of spikelets reaching anthesis, whereas in Azucena numbers were reduced. In both genotypesor=33.7 degrees C at anthesis caused sterility. In IR64, there was no interaction between temperature and duration of exposure, and spikelet fertility was reduced by about 7% per degrees C>29.6 degrees C. In Azucena there was a significant interaction and spikelet fertility was reduced by 2.4% degrees Cd-1 above a threshold of 33 degrees C. Marking individual spikelets is an effective method to phenotype genotypes and lines for heat tolerance that removes any apparent tolerance due to temporal escape.  相似文献   

5.
水稻在开花期对高温非常敏感,挖掘耐热种质并解析耐热性的遗传机制,有助于水稻的耐热性遗传改良。本研究选取205份国内外种质资源,在抽穗开花期对遇高温的稻穗进行标记,以高温下标记穗的结实率作为耐热指标,结合高密度SNP标记进行全基因组关联分析并初步预测候选基因。结果表明:不同水稻种质的耐热性差异明显,高温下的结实率最低为19.0%,平均值为64.0%,中位值为65.9%,最高值为86.6%,其中06-32、剪刀齐、娄早籼5号等17份种质的耐热性较强;全基因组关联分析共筛选到130个与耐热性显著关联的SNP标记,并鉴定到18个耐热QTL,其中6个QTL与已报道的耐热相关QTL共定位;qHT4-6与耐热性的关联度最高,根据该区间lead SNP的单倍型分类,G单倍型材料的开花期耐热性显著强于A单倍型材料,该区间附近有7个基因可能受高温调控。  相似文献   

6.
水稻花期高温胁迫研究进展与展望   总被引:18,自引:0,他引:18  
水稻花期高温引起的不育危害,具有发生可预测性低、作用局限于特定部位、致害程度严重等特点.本文就水稻花期高温不育问题,在发生时间、致害温度、品种反应差异、作用机制、鉴定方法以及抗性性状遗传等方面作了综述.并结合在日本的相关研究及对中国江汉平原杂交中稻花期高温危害发生的气候条件、品种差异等的初步分析,提出了该领域研究目前存在的关键问题和主要解决途径.  相似文献   

7.
水稻在抽穗开花期对高温胁迫非常敏感,通过挖掘耐热资源,培育耐热水稻品种是应对高温热害最有效的方式。前期研究发现,地方稻资源D43在花期连续高温条件下能保持较高的结实率。本研究在大田和人工气候室不同高温处理下,分析了D43的开花时间与耐热性之间的相互关系。结果表明,高温能够使水稻的开花时间提前,D43表现出稳定的早花时特性,高温胁迫下的开花时间集中在8∶30~10∶00;在开花时间段恒定高温胁迫下,D43的结实率较低;但在大田高温和人工气候室模拟高温胁迫下,D43的开花时间避开了日高温段,从而表现出较高的结实率;花器官形态性状包括花药开裂率、柱头上的花粉附着数、花粉萌发数与结实率之间呈显著正相关,因此可用于评价水稻的花期耐热性。  相似文献   

8.
Increasing temperature poses a serious threat to rice productivity. This study investigated the impact of various biochar treatments and phosphorous (P) fertilization on osmolyte accumulation, ROS development, and antioxidant activity in two rice cultivars (IR-64 and Huanghuazhan) under high-temperature stress. All plants of both cultivars were grown in a controlled environment under ambient temperatures (AT), high day temperatures (HDT) or high night temperatures (HNT). The different fertilization treatments were biochar alone, P alone and biochar + P with control. In the leaves and xylem sap of both rice cultivars, particularly in the susceptible cv. IR-64, high-temperature stress increased the production of MDA and H2O2. HDT and HNT decreased total soluble sugars, protein, and proline levels in both rice cultivars. HNT was observed as more harmful compared to HDT during most of the studied characteristics. The response of antioxidant enzyme activities, viz, SOD, POD, CAT, APX, ASC, GSH, GR, and GSSC activities, to the temperature treatments varied between the two cultivars. Antioxidant activities decreased in the leaves and xylem sap of IR-64 but increased in those of Huanghuazhan upon exposure to high-temperature stress. Huanghuazhan exhibited better heat tolerance compared to IR-64, which was linked to its increased antioxidant enzyme activation and metabolite synthesis. As compared to the control, all soil fertilization treatments considerably reduced the adverse impacts of high temperature on the rice cultivars. The combination of biochar and P resulted in better performance compared to the other treatments in terms of all studied attributes.  相似文献   

9.
BACKGROUND AND AIMS: High night temperatures are more harmful to grain weight in rice than high day temperatures. Grain growth rate and growth duration were investigated to determine which was the cause of the decrease in final grain weight under high night temperatures. Endosperm cell number and cell sizes were also examined to determine which might cause the decrease in final grain weight. METHODS: Rice plants were grown outdoors in plastic pots and moved at heading time to three temperature-controlled glasshouses under high night temperature (HNT; 22/34 degrees C), high day temperature (HDT; 34/22 degrees C) and control conditions (CONT; 22/22 degrees C). Grains were sampled periodically, and the time-course of grain growth was divided into rate and duration by logistic regression analysis. Endosperm cell numbers and cell sizes were analysed by digitalized hand-tracing images of endosperm cross-sections. KEY RESULTS: The duration of grain growth was reduced by high temperature both day and night. However, the rate of grain growth was lower in HNT than in HDT. The number of cells in endosperm cross-sections in HNT was similar to that in HDT, and higher than that in CONT. The average cell area was smaller in HNT than in either CONT or HDT. The differences in average cell areas between HNT and HDT were greater at distances 60-80 % from the central point of endosperm towards the endosperm surface. CONCLUSIONS: The results show that HNT compared with HDT reduced the final grain weight by a reduction in grain growth rate in the early or middle stages of grain filling, and also reduced cell size midway between the central point and the surface of endosperm.  相似文献   

10.
In the near future, global average temperature is expected to increase due to the accumulation of greenhouse gases, and increased temperatures will cause severe sterility in many crop species. In rice, since wild species show high genetic variation, they may have the potential to improve the flowering characters of cultivars. In this study, we investigated flowering characters under natural conditions by comparing an Asian wild rice accession of Oryza rufipogon W630 (originated from Myanmar) with a Japanese rice cultivar, O. sativa Japonica cv. Nipponbare. Further, QTL analysis for days to heading (DH) and spikelet opening time (SOT: the time of day when the spikelet opens) was carried out using BC(2)F(8) backcross population derived from the cross between them. Regarding DH, four QTLs were detected, and two of them were found to have wild alleles with strong effects leading to longer days to heading during the Japanese summer. These wild alleles may be used to produce late-heading cultivars that do not flower during the high summer temperatures anticipated in the future. As for SOT, two parameters of SOTb (beginning time when the first spikelet opens) and SOTm (median time when 50% of the spikelets open) were recorded and the time differences from Nipponbare were investigated. Two QTLs on chromosomes 5 and 10 and two QTLs on chromosomes 4 and 5 were detected for SOTb and SOTm, respectively. The wild alleles were responsible for early spikelet opening time at all loci. If the wild alleles detected in this study have the same effects in the genetic background of other cultivars, they will be very useful in producing early-flowering rice cultivars that complete fertilization in the morning before the temperature rises.  相似文献   

11.
Water deficits at the anthesis stage of rice (Oryza sativa L.)induce a high percentage of spikelet sterility and reduce grainyield. This study attempted to elucidate the direct effectsof water stress on panicle exsertion, spikelet opening, andspikelet desiccation leading to spikelet sterility. A well-wateredtreatment and two water stress levels were imposed in pot-grownplants of IRAT 13 (upland cultivar) and IR20 (lowland cultivar)at the time of flowering under greenhouse conditions A cultivar difference was observed in the flowering responseto water stress with a high sensitivity in IR20. The time courseof panicle exsertion showed an inhibitory effect due to thelow panicle water status. Low panicle water potentials significantlyreduced the number of opened spikelets. Spikelet opening wascompletely inhibited at panicle water potentials below –1·8MPa and –2·3 MPa in IR20 and IRAT 13, respectively.However, the peak spikelet opening time in a day was not influencedby the stress treatment. Spikelets in stressed panicles wereobserved to remain open for a longer period than in the well-wateredpanicles. The role of turgor in spikelet opening is also discussedin the study. At low panicle water potentials, severe desiccationof spikelets and anthers was noted. The deleterious effectsof water deficits on spikelet opening and spikelet water losscontributed to reduced spikelet fertility Oryza sativa L., rice, spikelet sterility, flowering, water stress, panicle water potentials, turgor potentials, desiccation  相似文献   

12.
本文从颖花发育的形态学和生理学角度,综述了水稻穗分化期至抽穗开花期非生物胁迫导致颖花不育的机理,旨在揭示非生物胁迫导致水稻颖花败育的关键过程及其内在联系.颖花是否可育主要与绒毡层细胞行为、花药开裂与散粉、花粉萌发、受精4个关键过程有关,胁迫通过影响这些关键过程,导致颖花不育.花药发育早期异常变化影响生殖细胞发育与授粉作用.可以通过喷施外源物质或增施硅肥等方法减缓非生物胁迫对颖花育性的伤害.今后需要加强交叉胁迫对颖花育性的影响、不同胁迫对花器官形态结构和生理特性的影响、不同水稻品种对胁迫的响应差异,以及胁迫影响花器官发育的分子生物学机制等方面的研究.  相似文献   

13.
The aim of this work was to develop a photoperiod-sensitive male sterile rice with stable sterility. We developed Changguang S, an indica rice strain, by using a short critical day length. Differences in the fertility responses of Changguang S strain pollen to temperature and photoperiod under natural and controlled conditions were studied. The results showed that Changguang S strain exhibited stable sterility under long-day and low-temperature conditions (22°C, 15 days). The stability of sterility was significantly higher than that of other such rice strains, Nongken 58S and 7001S. The critical photoperiod for inducing male sterility in Changguang S was 13 h or shorter, and its duration was significantly shorter than that required for rice strains Nongken 58S and 7001S. It is suggested that Changguang S is a typical photoperiod-sensitive male sterile rice strain with a shorter critical day length and a lower critical temperature. It is promising to apply this strain to two-line hybrid rice production.  相似文献   

14.

Background and Aims

High temperatures over 32–36 °C at anthesis induce spikelet sterility in rice. The use of a germplasm with an early-morning flowering (EMF) trait has been hypothesized as a way of avoiding this problem. In this study, the effect of the EMF trait on avoiding high temperature-induced sterility at anthesis by flowering at a cooler temperature in the early morning was evaluated.

Methods

The EMF trait was introgressed from wild rice (Oryza officinalis) into the rice cultivar ‘Koshihikari’ (O. sativa). First, spikelets of the EMF line and Koshihikari were subjected to rising temperatures during the daytime in the greenhouse to test for differences in spikelet sterility. Secondly, spikelets of both plants were exposed to 26, 34 and 38 °C at anthesis and to 38 °C beginning at least 1 h after flowering, in the growth chambers at 70 % relative humidity, to test for differences in tolerance to high temperatures.

Key Results

Spikelets of the EMF line started and completed flowering a few hours earlier than Koshihikari. In a greenhouse experiment, spikelets of Koshihikari opened after the air temperature reached 35 °C, but those of the EMF line could open at cooler temperatures. Under these conditions, spikelet sterility significantly increased in Koshihikari, but did not in the EMF line. The number of sterile spikelets increased as their flowering time was delayed in Koshihikari. Furthermore, the chamber experiments revealed that 60 % of the spikelets from both lines were sterile when exposed to 38 °C at anthesis, indicating that tolerance of high temperature was similar in both genotypes.

Conclusions

Reduced sterility in the EMF line subjected to rising temperatures at anthesis in the greenhouse was attributed to an earlier flowering time compared with Koshihikari. The EMF trait of wild rice is effective in mitigating anticipated yield loss due to global warming by escaping high-temperature stress at anthesis during the daytime.  相似文献   

15.
高温热害对水稻生产造成了巨大的损失。利用国际水稻研究所耐热圃材料,在抽穗扬花期进行高温处理,研究了该时期高温胁迫对水稻主要品质评价指标的影响,结果如下:水稻耐热圃材料的耐热性有较大的差别,依然存在高温相对敏感材料;抽穗扬花期高温胁迫对水稻主要品质评价指标影响较大;高温胁迫对水稻籽粒的透明度、长宽比、垩白率、糊化温度和蛋白质含量等品质指标与品种的耐热性相关关系不大;高温胁迫下直链淀粉含量变化与品种耐热系数表现出显著的正相关关系(r=0.659 78);高温胁迫下胶稠度变化与不同水稻品种的耐热系数呈显著的负相关关系(r=-0.516 70)。  相似文献   

16.
We integrated recent research on cardinal temperatures for phenology and early leaf growth, spikelet formation, early morning flowering, transpirational cooling, and heat- and cold-induced sterility into an existing to crop growth model ORYZA2000. We compared for an arid environment observed potential yields with yields simulated with default ORYZA2000, with modified subversions of ORYZA2000 and with ORYZA_S, a model developed for the region of interest in the 1990s. Rice variety ‘IR64’ was sown monthly 15-times in a row in two locations in Senegal. The Senegal River Valley is located in the Sahel, near the Sahara desert with extreme temperatures during day and night. The existing subroutines underestimated cold stress and overestimated heat stress. Forcing the model to use observed spikelet number and phenology and replacing the existing heat and cold subroutines improved accuracy of yield simulation from EF = −0.32 to EF =0.70 (EF is modelling efficiency). The main causes of improved accuracy were that the new model subversions take into account transpirational cooling (which is high in arid environments) and early morning flowering for heat sterility, and minimum rather than average temperature for cold sterility. Simulations were less accurate when also spikelet number and phenology were simulated. Model efficiency was 0.14 with new heat and cold routines and improved to 0.48 when using new cardinal temperatures for phenology and early leaf growth. The new adapted subversion of ORYZA2000 offers a powerful analytic tool for climate change impact assessment and cropping calendar optimisation in arid regions.  相似文献   

17.
以超级杂交晚稻品种‘五丰优T025’为材料,设置日排夜灌,灌溉水深4~5 cm(H1);日排夜灌,灌溉水深8~10 cm(H2);深水灌溉,保持水深8~10 cm(H3)等3个处理,以稻田湿润处理水层0~1 cm为对照,研究了抽穗扬花期遭遇低温条件下不同灌水方式和水层深度对双季晚稻生理特性及产量的影响.结果表明: 低温期间,不同灌水处理叶片、土层和冠层温度较对照均有所提高,其中H2处理增温效果最好.低温胁迫下各处理稻株叶片叶绿素含量、净光合速率、蒸腾速率、叶片气孔导度和胞间CO2浓度均逐渐降低,其中H2处理降低幅度最小;H2处理叶片丙二醛、游离脯氨酸含量上升幅度最小,可溶性蛋白含量高于其余处理,超氧化物歧化酶和过氧化物酶增幅最小,过氧化氢酶下降幅度最小.灌水保温均可达到增产效果,以H2处理效果最佳,遭遇低温的2014年和2015年第二播期H2处理分别比对照增产12.9%和13.5%;从产量结构上看,各处理较对照在单株有效穗数、穗长、结实率、千粒重上均有一定的改善,日排夜灌8~10 cm水深处理是增强双季杂交晚稻抽穗扬花期低温抵御能力较为实用的农艺措施.  相似文献   

18.
Terminal droughts, along with high temperatures, are becoming more frequent to strongly influence the seed development in cool‐season pulses like lentil. In the present study, the lentil plants growing outdoors under natural environment were subjected to following treatments at the time of seed filling till maturity: (a) 28/23 °C day/night temperature as controls; (b) drought stressed, plants maintained at 50% field capacity, under the same growth conditions as in a; (c) heat stressed, 33/28 °C day/night temperature, under the same growth conditions as in a; and (d) drought + heat stressed, plants at 50% field capacity, 33/28 °C day/night temperature, under the same growth conditions as in (a). Both heat and drought resulted in marked reduction in the rate and duration of seed filling to decrease the final seed size; drought resulted in more damage than heat stress; combined stresses accentuated the damage to seed starch, storage proteins and their fractions, minerals, and several amino acids. Comparison of a drought‐tolerant and a drought‐sensitive genotype indicated the former type showed significantly less damage to various components of seeds, under drought as well as heat stress suggesting a cross tolerance, which was linked to its (drought tolerant) better capacity to retain more water in leaves and hence more photo‐assimilation ability, compared with drought‐sensitive genotype.  相似文献   

19.
The effects of chronic, mild heat stress on fruit set, fruit production, release of pollen grains, photosynthesis, night respiration and anther dehiscence were examined in tomatoes (Lycopersicon esculentum Mill.) differing in high‐temperature sensitivity. Plants were grown under three temperature regimes: (1) 28/22 or 26/22 °C (optimal temperature); (2) 32/26 °C (high temperature); and (3) 32/26 °C day/night temperatures relieved at 28/22 °C for 10 d before anthesis, then returned to 32/26 °C (relieving treatment). FLA 7156 was the only cultivar with fruit set at 32/26 °C. All five cultivars, however, had fruit set under the relieving treatment (RT). The longer the relief, the higher the percentage of fruit set. Longer periods of relief also increased the number of pollen grains released, and linear regression analysis showed a significant relationship between the number of pollen grains released and the percentage of fruit set. Germination of pollen grains was also lowered in high‐temperature‐grown plants. The number of pollen grains produced, photosynthesis and night respiration did not limit fruit set under chronic, mild heat stress, however. This suggested that cultivar differences in pollen release and germination under heat stress are the most important factors determining their ability to set fruit.  相似文献   

20.
The predicted increase in the frequency and magnitude of extreme heat spikes under future climate can reduce rice yields significantly. Rice sensitivity to high temperatures during the reproductive stage is well documented while the same during the vegetative stage is more speculative. Hence, to identify and characterize novel heat‐tolerant donors for both the vegetative and reproductive stages, 71 rice accessions, including approximately 75% New Rice for Africa (NERICAs), were phenotyped across field experiments during summer seasons in Delhi, India, and in a controlled environment study at International Rice Research Institute , Philippines. NERICA‐L‐44 (NL‐44) recorded high seedling survival (52%) and superior growth and greater reproductive success exposed to 42.2°C (sd ± 2.3) under field conditions. NL‐44 and the heat‐tolerant check N22 consistently displayed lower membrane damage and higher antioxidant enzymes activity across leaves and spikelets. NL‐44 recorded 50–60% spikelet fertility, while N22 recorded 67–79% under controlled environment temperature of 38°C (sd ±1.17), although both had about 87% fertility under extremely hot field conditions. N22 and NL‐44, exposed to heat stress (38°C), had similar pollen germination percent and number of pollen tubes reaching the ovary. NL‐44 maintained low hydrogen peroxide production and non‐photochemical quenching (NPQ) with high photosynthesis while N22 avoided photosystem II damage through high NPQ under high‐temperature stress. NL‐44 with its reproductive stage resilience to extreme heat stress, better antioxidant scavenging ability in both vegetative tissue and spikelets and superior yield and grain quality is identified as a novel donor for increasing heat tolerance at both the vegetative and reproductive stages in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号