首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 137 毫秒
1.
马尼拉海沟北段俯冲带输入板块的不均一性   总被引:3,自引:1,他引:2       下载免费PDF全文
本文整合了横跨马尼拉海沟北段的21条多道地震层位信息、海底地形以及天然地震数据,分析了研究区内的输入板块性质差异及其对增生楔变形和地震活动性的影响.研究发现,沿马尼拉海沟北段的输入板块在地壳性质、基底起伏和沉积物厚度上存在明显的自北向南的差异:(1)最北段基底埋深大,上覆沉积物厚,地壳厚度较薄,地壳性质可能为初始南海洋壳或者圈闭的菲律宾海洋壳;(2)中段基底埋深浅,上覆沉积物薄,地壳厚度大,地壳属性表现为过渡壳性质,受到岩浆活动的影响,初始的地壳性质可能为华南陆块张裂分离出的微小陆壳块体,或者是南海洋壳;(3)南段基底埋深和沉积物厚度介于中间,存在明显的地磁条带,地壳性质为正常的南海洋壳.这一输入板块性质的不均一性可解释该区的特殊增生楔变形现象,如恒春弱变形带的出现,向海方向内凹的海沟形态以及上陆坡海底的大幅抬升等,同时也影响了研究区内的板片俯冲形态和发震构造的地震活动性.研究结果证实了沿马尼拉海沟北段存在南北向的地球物理性质的差异,但对于地壳属性的最终厘定还需要更多的地质与地球化学证据.  相似文献   

2.
地球物理资料所揭示的南海东北部中生代俯冲增生带   总被引:22,自引:2,他引:22  
根据新处理的重、磁和广角地震图件的解释, 推测在南海北部从台西南盆地到深海盆北缘存在一条大致NE45°走向的中生代俯冲增生带. 主要依据包括: 台西南-中沙东布格重力异常总梯度峰值带在强度和规模上都与马尼拉海沟俯冲增生带引起的总梯度峰值带相近; 该峰值带与海底地形和新生代构造都斜交, 指示前新生代构造; 该峰值带被NW向断层左行错断成雁列状, 符合中生代区域应力场特征; 其西北方在陆架区有与之大致平行的高磁异常带, 指示中生代火山弧. 此外, 海底地震仪资料显示在俯冲增生带位置上出现北倾陡坎、海底地震仪和长电缆反射地震剖面都显示相应部位出现双莫霍面叠置, 也可作为佐证. 这段中生代俯冲增生带的发现正好填补了欧亚大陆东南缘晚中生代俯冲增生带在南海东北部的一段空白.  相似文献   

3.
郑旭  周少辉 《华南地震》2022,42(1):86-96
俯冲带通常位于陆地板块与海洋板块或者海洋板块之间的交界处,地质构造复杂,地震活动频繁.在南海海域,马尼拉海沟俯冲带对中国海洋战略及近海重大工程的实施位置至关重要.在缺少实际地震数据的前提下,为分析马尼拉海沟俯冲带地震动及其衰减关系特征,通过采用随机有限断层法模拟该俯冲带地震动,分析地震动加速度时程及反应谱特点,同时分别...  相似文献   

4.
伴随洋壳的俯冲,驼伏其上的海山会导致上覆板块的强烈变形.为解释该构造变形特征,本文运用物理模拟实验的方法,着重分析海山的斜向俯冲对上覆板块变形的影响,并将模拟结果与正向俯冲过程进行对比.实验结果显示:海山开始进入俯冲,前缘楔体的增生会被阻止,同时楔体被抬升并出现脱顶构造,未被海山破坏的楔体会出现后冲断层的激活,后冲断层轴平行于海山的俯冲方向.海山进一步俯冲,突起项部发育一系列张扭性质的微断裂和走滑性质的共轭断裂,尾随突起之后的楔体由于重力会产生正断层系统.比起正向俯冲,斜向俯冲过程中所产生的后逆冲体、海山两侧的叠瓦状逆冲推覆构造都出现不对称分布,断裂和微断裂束的走向不规则散开,后冲断层的轴向及海山俯冲过后在楔体上产生的凹槽的轨迹都不断斜向迁移,且凹槽两侧的地势不一致等.最后利用文中的物理模拟结果,很好的解释了马尼拉海沟中段俯冲构造的构造特征,同时对其他俯冲大陆边缘的构造解释具有指导意义.  相似文献   

5.
南海东部海沟的震源机制解及其构造意义   总被引:4,自引:0,他引:4       下载免费PDF全文
摘要 根据马尼拉海沟及邻区地震、 火山活动的分析, 并结合地震震源机制和地球物理资料分析, 发现马尼拉海沟在深度200多公里仍为俯冲的性质, 深地震主要集中在12deg;N~14deg;N之间, 地震密集区出现明显的分段特征, 从北到南深度逐渐变深. 震源机制解所反映的最大主压应力轴(P轴)以菲律宾大断层为界, 北部主要为NW向; 南部较为复杂, 为NW, NE和近NS向. 显示了北部以挤压逆冲为特征, 南部以顺时针旋转为特征. 菲律宾板块向西仰冲所产生的构造应力, 被马尼拉海沟的斜向俯冲, 菲律宾大断层的左旋走滑, 以及民都洛断层的左旋走滑所调节.   相似文献   

6.
汕头-吕宋岛岩石圈速度结构剖面,划分出华南陆缘古生代陆壳、陆架区晚古生代-中生代陆壳、陆坡带中生代-早第三纪过渡壳、新生代南海海盆洋壳及吕宋岛中生代-新生代岛弧陆壳与东吕宋海槽洋壳等地壳构造组分,并确定了上述地壳构造之间的边界断裂构造及其性质。结合地震震源分布及机制,初步确定了华南陆架盆岭构造带北、南两侧地震构造的控震构造与发震构造性质及其震源力学特征;1)指出1994年9月16日台湾浅滩7.3级地震属于板缘壳幔地震及造成一千公里有感范围的原因;2)马尼拉海沟的海底地堑构造与南海海盆岩石圈地幔上隆是马尼拉海沟俯冲带震源显示正断层性质的原因,且为被动的或转换俯冲带;3)东吕宋海槽仍属于菲律宾海俯冲带性质;吕宋岛东西两侧俯冲带岩石圈板片震源深度的准三层分布,可能表明俯冲带岩石圈板片存在相应的低速滑移层。  相似文献   

7.
马尼拉俯冲带缺失中深源地震成因初探   总被引:1,自引:0,他引:1  
马尼拉俯冲带是整个南海地震活动多发区,地震成因与南海的形成和构造演化关系密切.对马尼拉俯冲带地震数据和层析成像结果进行了深入分析.结果表明:马尼拉俯冲带的地震活动主要为密集的浅源地震,缺失中深源地震.进一步分析揭示:①脱水和榴辉岩的形成在南海洋壳到达软流圈前就基本停止.马尼拉俯冲带南部在较浅的深度就转变为塑性变形,并停...  相似文献   

8.
马尼拉俯冲带的地震层析成像研究   总被引:2,自引:2,他引:0       下载免费PDF全文
基于国际地震中心的P波走时数据和层析成像反演方法,获得了具有较高分辨率的马尼拉俯冲带的深部速度模型.结果表明,(1)高速的南海俯冲板片沿马尼拉俯冲带的俯冲形态随纬度发生变化,在14°N和16°N之间,板片俯冲角度较大,俯冲深度可达400~500 km,在17°N附近,俯冲板片角度和深度较南部变小,而在18°N附近,俯冲板片以近垂直角度俯冲到地幔转换带;(2)17°N和18°N之间俯冲角度的变化意味着南海板片发生了撕裂;(3)在14°N附近,南海板片由300 km以上的近垂直俯冲转为200~300 km深度的近水平展布,与震源分布存在较大的差异,表明南海板片发生了撕裂,并且导致410 km间断面抬升.根据成像结果计算的不同位置南海板片的俯冲长度和时间表明,南海板片俯冲之前的面积为现今面积的两倍,14°N最先开始发生俯冲,并由南向北扩展.  相似文献   

9.
为了研究海沟型巨大地震发生机制及其构造动力学特征,详细研究了地震活动与震源机制结果,根据地震俯冲带几何形状及其内应力场区域特征,南海海槽下的俯冲带可划分为两段: 东部的四国-纪伊半岛段和西部的九州段. 东部的菲律宾海板块地震俯冲带呈现出低角度俯冲(10°~22°),且俯冲深度相当浅(60~85km)的特征;而西部九州段的俯冲带为高角度俯冲(40°),且俯冲深度较深(160km). 东、西部俯冲带内部应力场也截然不同. 东部的四国大部分地区和纪伊半岛的俯冲带内表现为俯冲压缩型应力场, 而西部的九州段则为明显的俯冲拉张型应力场. 本文在综合分析了重力异常、GPS、热流量等地球物理观测结果后指出,南海海槽东部, 即四国-纪伊半岛以南的海槽区域, 具有与智利海沟极其相似的地震发生板块构造动力学背景和高应力积累等特征, 属于年轻活动俯冲带的高应力型俯冲. 而西部的九州段,虽然也是海沟型地震活动区, 但不具有大地震发生的构造动力学背景和高应力积累, 不属于年轻活动俯冲带的高应力型俯冲. 俯冲带年龄的不同很可能是造成南海海槽东、西段板块构造动力学以及应力场不同的根本原因之一.  相似文献   

10.
分析可能影响中国的地震海啸发生的构造环境,查明中国大陆沿海历史上有没有遭受过海啸的袭击,对于预测和预防将来可能发生的海啸灾害具有重要意义。中国大陆以东受宽阔的大陆架和一系列岛弧保护,只有南海马尼拉海沟俯冲带具备发生可能引发海啸的逆冲型地震的条件。文中在分析史料和马尼拉海沟俯冲带构造环境的基础上,利用数值模拟技术,认为对中国沿海可以产生最大达4.0m浪高的海啸威胁。历史文献记录也支持这一结论。这些结果都表明,马尼拉海沟潜在地震海啸对中国大陆影响很大,值得我们重视和预防。  相似文献   

11.
Cretaceous episodic growth of the Japanese Islands   总被引:1,自引:0,他引:1  
G. Kimura 《Island Arc》1997,6(1):52-68
Abstract The Japanese Islands formed rapidly in situ along the eastern Asian continental margin in the Cretaceous due to both tectonic and magmatic processes. In the Early Cretaceous, huge oceanic plateaus created by the mid-Panthalassa super plume accreted with the continental margin. This tectonic interaction of oceanic plateau with continental crust is one of the significant tectonic processes responsible for continental growth in subduction zones. In the Japanese Islands, Late Cretaceous-Early Paleogene continental growth is much more episodic and drastic. At this time the continental margin uplifted regionally, and intra-continent collision tectonics took place in the northern part of the Asian continent. The uplifting event appears to have been caused by the subduction of very young oceanic crust (i.e. the Izanagi-Kula Plate) along the continental margin. Magmatism was also very active, and melting of the young oceanic slab appears to have resulted in ubiquitous plutons in the continental margin. Regional uplift of the continental margin and intra-continent collision tectonics promoted erosion of the uplifted area, and a large amount of terrigenous sediment was abruptly supplied to the trench. As a result of the rapid supply of terrigenous detritus, the accretionary complexes (the Hidaka Belt in Hokkaido and the Shimanto Belt in Southwest Japan) grew rapidly in the subduction zone. The rapid growth of the accretionary complexes and the subduction of very young, buoyant oceanic crust caused the extrusion of a high-P/T metamorphic wedge from the deep levels of the subduction zone. Episodic growth of the Late Cretaceous Japanese Islands suggests that subduction of very young oceanic crust and/or ridge subduction are very significant for the formation of new continental crust in subduction zones.  相似文献   

12.
Abstract Seismic reflections across the accretionary prism of the North Sulawesi provide excellent images of the various structural domains landward of the frontal thrust. The structural domain in the accretionary prism area of the North Sulawesi Trench can be divided into four zones: (i) trench area; (ii) Zone A; (iii) Zone B; and (iv) Zone C. Zone A is an active imbrication zone where a decollement is well imaged. Zone B is dominated by out‐of‐sequence thrusts and small slope basins. Zone C is structurally high in the forearc basin, overlain by a thick sedimentary sequence. The subducted and accreted sedimentary packages are separated by the decollement. Topography of the oceanic basement is rough, both in the basin and beneath the wedge. The accretionary prism along the North Sulawesi Trench grew because of the collision between eastern Sulawesi and the Bangai–Sula microcontinent along the Sorong Fault in the middle Miocene. This collision produced a large rotation of the north arm of Sulawesi Island. Rotation and northward movement of the north arm of Sulawesi may have resulted in southward subduction and development of the accretionary wedge along North Sulawesi. Lateral variations are wider in the western areas relative to the eastern areas. This is due to greater convergence rates in the western area: 5 km/My for the west and 1.5 km/My for the east. An accretionary prism model indicates that the initiation of growth of the accretionary prism in the North Sulawesi Trench occurred approximately 5 Ma. A comparison between the North Sulawesi accretionary prism and the Nankai accretionary prism of Japan reveals similar internal structures, suggesting similar mechanical processes and structural evolution.  相似文献   

13.
Collision, subduction and accretion events in the Philippines: A synthesis   总被引:7,自引:0,他引:7  
Abstract The Philippines preserves evidence of the superimposition of tectonic processes in ancient and present‐day collision and subduction zone complexes. The Baguio District in northern Luzon, the Palawan–Central Philippine region and the Mati–Pujada area in southeastern Mindanao resulted from events related to subduction polarity reversal leading to trench initiation, continent‐arc collision and autochthonous oceanic lithosphere emplacement, respectively. Geological data on the Baguio District in Northern Luzon reveal an Early Miocene trench initiation for the east‐dipping Manila Trench. This followed the Late Oligocene cessation of subduction along the west‐dipping proto‐East Luzon Trough. The Manila Trench initiation, which is modeled as a consequence of the counter‐clockwise rotation of Luzon, is attributed to the collision of the Palawan microcontinental block with the Philippine Mobile Belt. In the course of rotation, Luzon onramped the South China Sea crust, effectively converting the shear zone that bounded them into a subduction zone. Several collision‐related accretionary complexes (e.g. Romblon, Mindoro) are present in the Palawan–Central Philippine region. The easternmost collision zone boundary is located east of the Romblon group of islands. The Early Miocene southwestward shift of the collision boundary from Romblon to Mindoro started to end by the Pliocene. Continuous interaction between the Palawan microcontinental block and the Philippine Mobile Belt is presently taken up again along the collisional boundary east of the Romblon group of islands. The Mati–Pujada Peninsula area, on the other hand, is underlain by the Upper Cretaceous Pujada Ophiolite. This supra‐subduction zone ophiolite is capped by chert and pelagic limestones which suggests its derivation from a relatively deep marginal basin. The Pujada Ophiolite could be a part of a proto‐Molucca Sea plate. The re‐interpretation of the geology and tectonic settings of the three areas reaffirm the complex geodynamic evolution of the Philippine archipelago and addresses some of its perceived geological enigmas.  相似文献   

14.
The seismogenic zone of subduction thrust faults   总被引:13,自引:0,他引:13  
Abstract Subduction thrust faults generate earthquakes over a limited depth range. They are aseismic in their seaward updip portions and landward downdip of a critical point. The seaward shallow aseismic zone, commonly beneath accreted sediments, may be a consequence of unconsolidated sediments, especially stable-sliding smectite clays. Such clays are dehydrated and the fault may become seismogenic where the temperature reaches 100--150°C, that is, at a 5--15 km depth. Two factors may determine the downdip seismogenic limit. For subduction of young hot oceanic lithosphere beneath large accretionary sedimentary prisms and beneath continental crust, the transition to aseismic stable sliding is temperature controlled. The maximum temperature for seismic behavior in crustal rocks is ~ 350°C, regardless of the presence of water. In addition, great earthquake ruptures initiated at less than this temperature may propagate with decreasing slip to where the temperature is ~ 450°C. For subduction beneath thin island arc crust and beneath continental crust in some areas, the forearc mantle is reached by the thrust shallower than the 350°C temperature. The forearc upper mantle probably is aseismic because of stable-sliding serpentinite hydrated by water from the underthrusting oceanic crust and sediments. For many subduction zones the downdip seismogenic width defined by these limits is much less than previously assumed. Within the narrowly defined seismic zone, most of the convergence may occur in earthquakes. Numerical thermal models have been employed to estimate temperatures on the subduction thrust planes of four continental subduction zones. For Cascadia and Southwest Japan where very young and hot plates are subducting, the downdip seismogenic limit on the subduction thrust is thermally controlled and is shallow. For Alaska and most of Chile, the forearc mantle is reached before the critical temperature, and mantle serpentinite provides the limit. In all four regions, the seismogenic zones so defined agree with estimates of the extent of great earthquake rupture, and with the downdip extent of the interseismic locked zone.  相似文献   

15.
The early stages of southern Apennine development have been unraveled by integrating the available stratigraphic record provided by synorogenic strata (of both foredeep and wedge-top basin environments) with new structural data on the Liguride accretionary wedge cropping out in the Cilento area, southern Italy. Our results indicate that the final oceanic subduction stages and early deformation of the distal part of the Apulian continental margin were controlled by dominant NW–SE shortening. Early Miocene subduction-accretion, subsequent wedge emplacement on top of the Apulian continental margin and onset of footwall imbrication involving detached Apulian continental margin carbonate successions were followed by extensional deformation of the previously ‘obducted’ accretionary wedge. Wedge thinning also enhanced the development of accommodation space, filled by the dominantly siliciclastic Cilento Group deposits. The accretionary wedge units and the unconformably overlying wedge-top basin sediments experienced renewed NW–SE shortening immediately following the deposition of the Cilento Group (reaching the early Tortonian), confirming that the preceding wedge thinning represented an episode of synorogenic extension occurring within the general framework of NW–SE convergence. The documented Early to the Late Miocene steps of southern Apennine development are clearly distinct with respect to the subsequent (late Tortonian-Quaternary) stages of fold and thrust belt evolution coeval with Tyrrhenian back-arc extension, which were characterized by NE-directed thrusting in the southern Apennines.  相似文献   

16.
The mechanism by which high-pressure metamorphosed continental material is emplaced at high structural levels is a major unsolved problem of collisional orogenesis. We suggest that the emplacement results from partial subduction of the continental margin which, because of its high flexural rigidity, produces a rapid change in the trajectory of the descending slab. We assume a two-fold increase in effective elastic thickness of the lithosphere as the continental margin approaches the subduction zone, and calculate the flexural profile of a thin plate for progressive downward migration of the zone of increased rigidity. We assess the effect of changes in the flexural profile on the overlying accretionary prism and mantle wedge as the continent approaches by estimating the extra stresses that are imposed on the wedge due to the bending moment exerted by the continental part of the plate. The wedges overlying the subduction zones, and the subducting slab itself, experience substantial extra compressional stress at depths of around 100 km, and extensional stress at shallower depths, as the continental margin passes through the zone of maximum curvature. The magnitudes of such extra stresses are probably adequate to effect significant deformation of the wedge and/or the descending plate, and are experienced in a time interval of less than 5 m.y. for typical subduction rates. The spatial variation of yield stresses in the region of the wedge and descending slab indicates that much of this deformation may be taken up in the crustal part of the descending slab, which is the weakest region in the deeper parts of the subduction zone. This may result in rapid upward migration of the crust of the partially subducted continental margin, against the flow of subduction. High-pressure metamorphosed terranes emplaced by the mechanism envisaged in this paper would be bounded by thrust faults below and normal faults above. Movement on the faults would have been coeval, and would have resulted in rapid unroofing of the high-pressure terranes, synchronous with arrival of the continental margin at the subduction zone and, therefore, relatively early in the history of a collisional orogen.  相似文献   

17.
The Andaman–Sumatra margin displays a unique set‐up of extensional subduction–accretion complexes, which are the Java Trench, a tectonic (outer arc) prism, a sliver plate, a forearc, oceanic rises, inner‐arc volcanoes, and an extensional back‐arc with active spreading. Existing knowledge is reviewed in this paper, and some new data on the surface and subsurface signatures for operative geotectonics of this margin is analyzed. Subduction‐related deformation along the trench has been operating either continuously or intermittently since the Cretaceous. The oblique subduction has initiated strike–slip motion in the northern Sumatra–Andaman sector, and has formed a sliver plate between the subduction zone and a complex, right‐lateral fault system. The sliver fault, initiated in the Eocene, extended through the outer‐arc ridge offshore from Sumatra, and continued through the Andaman Sea connecting the Sagaing Fault in the north. Dominance of regional plate dynamics over simple subduction‐related accretionary processes led to the development and evolution of sedimentary basins of widely varied tectonic character along this margin. A number of north–south‐trending dismembered ophiolite slices of Cretaceous age, occurring at different structural levels with Eocene trench‐slope sediments, were uplifted and emplaced by a series of east‐dipping thrusts to shape the outer‐arc prism. North–south and east–west strike–slip faults controlled the subsidence, resulting in the development of a forearc basins and record Oligocene to Miocene–Pliocene sedimentation within mixed siliciclastic–carbonate systems. The opening of the Andaman Sea back‐arc occurred in two phases: an early (~11 Ma) stretching and rifting, followed by spreading since 4–5 Ma. The history of inner‐arc volcanic activity in the Andaman region extends to the early Miocene, and since the Miocene arc volcanism has been associated with an evolution from felsic to basaltic composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号