首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
在履带车辆能量控制策略的研究中,相比于传统的履带车辆单一的动力源,混合动力履带车辆是多能源动力系统,能量分配控制策略制约着动力系统的运行效率.为了优化能量分配控制以及改善整车的燃油经济性,提出了在发动机多点转速下,采用模糊控制理论的动力系统功率分配控制策略;建立了面向控制的整车动态仿真模型,包括驾驶员模型,动力电池组模型,发动机模型,电机模型以及整车动力学模型.根据建立的车辆动态模型,采用模糊分配控制策略,在不同的SOC初值、不同的循环工况以及不同的控制策略下仿真,结果表明,利用模糊规则的能量分配控制策略燃油经济性较好,并且能保持动力电池组SOC平衡在在一定范围内.  相似文献   

2.
在工业能源结构改革中,配置混合储能系统(Hybrid Energy Storage System,HESS)能够有效促进工业园区用户侧清洁能源的消纳.提出一种基于工业需量管理HESS配置与运行的两阶段优化模型.采用经验模态分解法对用户净负荷功率分频,分别将高频、低频分量输入HESS的不同模块.以工业用户总成本为目标,充分考虑并网负荷的波动性,建立月度和日前两阶段优化模型,使用改进的混沌粒子群算法(CPSO)求解.仿真结果表明,采用HESS替代单一储能,并通过改进的CPSO算法优化模型,使得工业用户用电总成本大大降低,对工业净负荷的削峰效果明显,降低了负荷并网的波动性.  相似文献   

3.
控制策略是混合动力汽车的关键技术,直接影响混合动力汽车整车性能.ISG混合动力汽车中发动机和电机输出转矩在同轴上耦合,工作要求具有独特性.通过对驱动结构和工作要求分析,以优化整车动力性和燃油经济性为目标,提出了针对ISG混合动力系统的电辅助控制策略,制定了各行驶工况下的控制逻辑.建立了相关控制模型,在Advisor软件平台上对控制策略进行了仿真.仿真结果表明,提出的电辅助控制策略完全适用于ISG混合动力汽车,与传统汽车相比,整车动力性和燃油经济性均得到进一步提高.  相似文献   

4.
钟宛余  李春贵 《计算机仿真》2012,29(2):362-366,377
研究电动汽车能量管理优化控制问题,混合动力电动汽车(HEV)能量管理系统,由于动力效率决定于发动机性能控制。针对传统方法燃油利用率低,车辆驾驶控制方式影响了优化。为了提高能源优化效率及优化驾驶控制,提出了一种燃油经济性和驾驶性能全局优化的能量管理控制策略。首先在系统中加入驾驶性能变量,并在代价函数中加入驾驶性能限制,然后把HEV能量管理问题建模为多步决策过程问题,运用动态规划(DP)原理,得到了全局优化的能量管理控制器。将该控制器模型嵌入高级车辆仿真器ADVISOR的并联车辆模型中,与传统规则的控制策略进行仿真对比。仿真结果表明,新的控制策略使燃油经济性提高了约16%,并且使驾驶性能控制在良好的范围内,能有效提高HEV能量管理的效率和实用性,为优化设计提供了依据。  相似文献   

5.
为了有效提高ISG重度混合动力汽车(full hybrid electric vehicle assisted by an integrated starter generator,ISG-FHEV)发动机和电机驱动系统效率以及整车的燃油经济性,设计了一种等效燃油消耗最小控制策略(equivalent consumption minimization strategy,ECMS);在分析ISG-FHEV功率分流模式的基础上,同时考虑发动机和电机驱动系统效率,构建出包含发动机和电机驱动系统的功率分配、ISG电机和主电机间的功率分配两个控制变量的整车等效燃油消耗最小目标函数;引入庞特里亚金极小值原理(pontryagin’s minimum principle,PMP)并加入电池SOC偏差控制确定等效因子;最后,进行了仿真和对比分析;结果表明,与基于规则的控制策略相比,发动机效率提高9%,ISG电机和主电机总效率提高11.4%,百公里耗油量降低9.98%。  相似文献   

6.
为了提高并联混合动力汽车驱动系统的实时效率,降低燃油消耗,本文提出一种基于效率最优的协调控制策略.根据不同驱动模式下电池的充放电状态,建立了充放电状态下驱动系统的等效燃油消耗模型,在分析电池效率和发动机效率的基础上,得到驱动系统效率的统一表达式,进而通过建立不同功率需求不同荷电状态下系统最优效率的功率分配系数图谱,设计了系统效率最优的协调控制策略,协调控制策略根据优化的功率分配系数在发动机和电机间进行力矩分配,协调控制策略可以离线计算并实时执行.两种工况循环下的仿真结果表明效率最优控制策略能有效地提高混合动力系统实时效率和燃油经济性.  相似文献   

7.
为提高超级电容混合动力轮胎式集装箱门式起重机(Rubber Typed Gantry, RTG)系统的能量利用率和燃油的经济性,需要对混合动力能量系统进行有效的管理。提出了一种考虑系统能耗和非再生能量因素情况下,能分别确定混合动力系统中柴油发电机组最优输出功率和超级电容器组的最优输出功率的优化方法。建立了柴油发动机组和超级电容器组的数学模型。根据混合动力RTG关键特性参数和负载需求值,得出了负载需求曲线图。考虑发电机组燃油消耗的能量、来自电容器组的能量贡献和产生的非再生能量,构造了整体能耗的成本函数。并引入遗传算法(Genetic Algorithm, GA)进行求解,最后进行仿真和对比分析。结果表明,与传统的基于规则的控制策略相比,遗传算法优化后的能量管理系统,其能量消耗减少了35.9%。  相似文献   

8.
车速动态特性优化在HEV多能源动力总成系统控制中的运用   总被引:1,自引:0,他引:1  
根据车辆控制工程理论,建立混合动力电动汽车(HEV)动力驱动模型及汽车闲环控制系统仿真模型,并以此进行计算机动态仿真.通过对设定不同汽车车速以及控制器参数下汽车实际车速响应情况以及响应与系统输入力矩之间关系的分析,发现现有混合动力电动汽车控制策略难以在保证汽车良好动态特性的基础上实现环保与节能.为解决上述矛盾,提出车速动态特性优化在HEV多能源动力总成系统控制中的运用,并论述其原理及实现方法.比较在两种控制策略下特定工况段的发动机油耗,说明车速动态特性优化的现实意义.  相似文献   

9.
考虑到行驶工况对具有多个动力源的PHEV燃油经济性的显著影响,提出一种基于K-means++工况识别的能量管理策略。以ADVISOR中30种标准行驶工况构建组合工况,在工况片段划分与工况识别周期选取的基础上,结合K-means++聚类算法得到四种聚类结果,分别对应拥堵、城市、郊区以及高速四种典型行驶工况。建立发动机油耗与电机电能之和的整车能耗成本数学模型,采用极小值原理分别求解出四种典型工况下对应的发动机与驱动电机最优功率分配方式。对一段随机行驶工况进行聚类、仿真分析,结果表明,所提控制策略能有效识别随机工况,根据不同识别结果分配动力源间能量与功率,进一步提升了整车燃油经济性。  相似文献   

10.
为了既提高整车系统效率,又维持燃料电池和蓄电池工作在各自的高效区,提出了一种全局优化与局部协调相结合的燃料电池混合车的能量控制策略的设计思想.首先形成一个非线性、具有限制的、以整车系统效率最大为目标的优化问题,然后选用序列二次规划法算法求解.为保证各子系统工作在最优的范围内,利用燃料电池动态特性慢的特点,采用蓄电池第一优先使用的策略.仿真结果表明,所提议的优化控制策略提高了整车系统的效率,维持了蓄电池的荷电状态在合理的区间,同时使燃料电池也工作在高效区.  相似文献   

11.
针对电动汽车复合电源模糊能量管理,传统模糊控制依赖专家经验存在精度不高、自适应性弱等不足,设计了一种基于改进布谷鸟搜索算法(ICS)优化的模糊控制方法。在Matlab/Simulink平台上建立车载复合电源模糊控制器,采用ICS算法对模糊控制器中的隶属度函数参数进行优化,然后将其嵌入到Advisor软件中复合电源电动汽车模型进行仿真与分析。结果表明,与传统模糊控制相比较,该方法能更好发挥超级电容性能优势,减缓了电池输入、输出功率且整车能耗经济性得到提升。  相似文献   

12.
Regarding the problem of the short driving distance of pure electric vehicles, a battery, super-capacitor, and DC/DC converter are combined to form a hybrid energy storage system (HESS). A fuzzy adaptive filtering-based energy management strategy (FAFBEMS) is proposed to allocate the required power of the vehicle. Firstly, the state of charge (SOC) of the super-capacitor is limited according to the driving/braking mode of the vehicle to ensure that it is in a suitable working state, and fuzzy rules are designed to adaptively adjust the filtering time constant, to realize reasonable power allocation. Then, the positive and negative power are determined, and the average power of driving/braking is calculated so as to limit the power amplitude to protect the battery. To verify the proposed FAFBEMS strategy for HESS, simulations are performed under the UDDS (Urban Dynamometer Driving Schedule) driving cycle. The results show that the FAFBEMS strategy can effectively reduce the current amplitude of the battery, and the final SOC of the battery and super-capacitor is optimized to varying degrees. The energy consumption is 7.8% less than that of the rule-based energy management strategy, 10.9% less than that of the fuzzy control energy management strategy, and 13.1% less than that of the filtering-based energy management strategy, which verifies the effectiveness of the FAFBEMS strategy.  相似文献   

13.
节能环保的出行方式得到政府的大力推广, 其中燃料电池混合动力有轨电车由于可无网运行且节能环保而备受关注.为了改善燃料电池/超级电容/动力电池大功率有轨电车的燃料经济性与系统耐久性, 提出一种有轨电车能量管理策略(Energy management strategy, EMS)的多目标优化方法. 首先以氢燃料消耗量和能量源性能衰减率作为评价指标, 建立多目标成本函数. 由于两个指标很难在同一个等式中评价, 设计了基于状态机与非支配排序的能量管理Pareto多目标优化方法, 获得了有轨电车能量管理策略Pareto非劣解集, 并分析了能量管理策略的目标功率参数对性能指标的影响规律, 进而遴选出兼顾燃料经济性与系统耐久性的综合最优解. 结果表明, 与功率跟随策略和基于遗传算法优化策略相比, 该能量管理优化方法的燃料经济性分别提高了29.4 %和2.4 %.  相似文献   

14.
The development of intelligent connected technology has brought opportunities and challenges to the design of energy management strategies for hybrid electric vehicles. First, to achieve car-following in a connected environment while reducing vehicle fuel consumption, a power split hybrid electric vehicle was used as the research object, and a mathematical model including engine, motor, generator, battery and vehicle longitudinal dynamics is established. Second, with the goal of vehicle energy saving, a layered optimization framework for hybrid electric vehicles in a networked environment is proposed. The speed planning problem is established in the upper-level controller, and the optimized speed of the vehicle is obtained and input to the lower-level controller. Furthermore, after the lower-level controller reaches the optimized speed, it distributes the torque among the energy sources of the hybrid electric vehicle based on the equivalent consumption minimum strategy. The simulation results show that the proposed layered control framework can achieve good car-following performance and obtain good fuel economy.  相似文献   

15.
Hybrid electric buses have been a promising technology to dramatically lower fuel consumption and carbon dioxide (CO2) emission, while energy management strategy (EMS) is a critical technology to the improvements in fuel economy for hybrid electric vehicles (HEVs). In this paper, a suboptimal EMS is developed for the real-time control of a series–parallel hybrid electric bus. It is then investigated and verified in a hardware-in-the-loop (HIL) simulation system constructed on PT-LABCAR, a commercial real-time simulator. First, an optimal EMS is obtained via iterative dynamic programming (IDP) by defining a cost function over a specific drive cycle to minimize fuel consumption, as well as to achieve zero battery state-of-charge (SOC) change and to avoid frequent clutch operation. The IDP method can lower the computational burden and improve the accuracy. Second, the suboptimal EMS for real-time control is developed by constructing an Elman neural network (NN) based on the aforementioned optimal EMS, so the real-time suboptimal EMS can be used in the vehicle control unit (VCU) of the hybrid bus. The real VCU is investigated and verified utilizing a HIL simulator in a virtual forward-facing HEV environment consisting of vehicle, driver and driving environment. The simulation results demonstrate that the proposed real-time suboptimal EMS by the neural network can coordinate the overall hybrid powertrain of the hybrid bus to optimize fuel economy over different drive cycles, and the given drive cycles can be tracked while sustaining the battery SOC level.  相似文献   

16.
电动汽车是解决能源危机和环境污染的有效方法,但就目前情况来看,电动汽车大规模使用仍需时日。尽管如此,低速电动汽车目前已在中国低端电动汽车市场取得了成功。文章探讨了低速电动汽车的行驶特性、动态性能、电池性能和能量效率。通过底盘测功机实验测试与室外道路实验,分析了低速电动汽车的负载特性和过载特性,研究不同电池对低速电动车性价比的影响。虽然目前锂离子电池比铅酸电池成本更高,但实际应用中,锂离子电池效率更高、全寿命行驶距离更长。直流驱动电机有优秀的过载能力,但电机系统的低效率限制了低速电动汽车的整车能量效率。因此,开发低成本、高效率的电池及电机驱动系统是提高低速电动车性价比的有效途径。  相似文献   

17.
针对传统插电式混合动力汽车智能控制策略计算量大,难以实现实时最优控制的问题,提出了基于蓄电池充放电管理的插电式混合动力汽车预测控制策略.利用实测通勤插电式混合动力汽车车速信息,以蓄电池荷电状态为系统状态变量,以蓄电池充放电功率为系统控制变量,插电式混合动力汽车燃油消耗量最低为系统性能指标,设计了插电式混合动力汽车的模型预测控制智能优化算法,运用连续广义最小残量方法求解最优控制问题.在Matlab/Simulink与GT-POWER联合仿真平台上进行仿真,实验结果验证了所设计的模型预测控制算法不仅可以大幅度提高混合动力汽车的燃油经济性,而且能够满足实时控制的要求.  相似文献   

18.
针对混合动力电动汽车(HEV)氮氧化物( )排放的问题,提出了一种基于决策树CART算法的柴油混合动力能源管理策略。首先,提出了一种结合决策树与回归树的分类算法(Classification and Regression Tress,CART),针对类别和变量特征,从一个或多个预测变量中预测出个例的趋势变化关系;然后,通过控制发动机和电动机之间的扭矩分配,引入了额外的自由度以调整从纯燃料经济性情况到纯 限制情况的优化权衡;最后,采用基于软件在环路和硬件在环仿真的方法,从而根据动力系统配置了解系统性能,并调整所提出的能源管理策略。实验结果表明,提出的柴油混合动力能源管理策略中, 的减少对燃料消耗的影响,且可以通过选择最佳工作点和限制发动机动力来限制 排放的潜力。相比其他几种较新的同类方案,提出的方案在同等燃料消耗的情况下 排放量更小,在燃料消耗略有下降的情况下,可以显着降低 。  相似文献   

19.
Hybrid Electric Vehicles (HEVs) generate the power required to drive the vehicle via a combination of internal combustion engines and electric generators. To make HEVs as efficient as possible, proper management of the different energy elements is essential. This task is performed using the HEV control strategy. The HEV control strategy is the algorithm according to which energy is produced, used and saved. This paper describes a genetic-fuzzy control strategy for parallel HEVs. The genetic-fuzzy control strategy is a fuzzy logic controller that is tuned by a genetic algorithm. The objective is to minimize fuel consumption and emissions, while enhancing or maintaining the driving performance characteristics of the vehicle. The tuning process is performed over three different driving cycles including NEDC, FTP and TEH-CAR. Results from the computer simulation demonstrate the effectiveness of this approach in reducing fuel consumption and emissions without sacrificing vehicle performance.  相似文献   

20.
A real time control strategy for fuel cell hybrid vehicles is proposed. The objective is to reduce the hydrogen consumption by using an efficient power sharing strategy between the fuel cell system (FCS) and the energy buffer (EB). The energy buffer (battery or supercapacitor) is charge-sustained (no plug-in capabilities). The real time control strategy is derived from a non-causal optimization algorithm based on optimal control theory. The strategy is validated experimentally with a hardware-in-the-loop (HiL) test bench based on a 600 W fuel cell system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号