首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
青藏高原上空的云及其相关联的降水和辐射影响了高原上空非绝热加热的空间结构。2006年卫星发射升空的CloudSat/CALIPSO卫星提供了定量的、完整的云垂直结构信息。本文回顾了国内外基于该资料进行的青藏高原上云宏观和微观结构特征,云与降水相关性,云辐射效应以及模式中的云-辐射问题方面的研究。指出抬升的青藏高原上水汽较少,限制了高原上云的垂直高度,对云层厚度和层数有显著压缩作用。在云量及其季节变化上,单层云的相对贡献大于亚洲季风区的其他区域;夏季对流云比较浅薄,积云发生频率最高,云内滴谱较宽;降水云以积云和卷云为主,云对总降水的贡献随着云层数增多而减小,降水增强时高层冰粒子的密集度趋于紧密;夏季青藏高原地区云的净辐射效应在8 km高度存在一个厚度仅1 km左右但较强的辐射冷却层,而在其下(4~7 km高度之间)为强的辐射加热层。最后展望了未来需要进一步开展的研究。  相似文献   

2.
利用辽宁阜新国家站(121.7458°E,42.0672°N)的毫米波云雷达(8 mm)和微雨雷达(12.5 mm)对2020年8月12-13日东北冷涡影响下的一次降水过程进行了观测,分析了云降水的垂直结构特征并探讨了降水机制。结果表明:本次过程中,云水平方向发展不均匀,以层状云和层积混合云为主,云内有时还嵌有对流泡。云降水阶段性变化明显,先后出现了层状云降水、层积混合云降水和对流云降水。层状云降水和层积混合云降水均表现出明显的亮带特征,但层积混合云降水的雷达回波强度、回波顶高和降水强度明显大于层状云降水。对流云降水的雷达回波会因强降水而产生明显衰减,因此回波顶高不能表示出实际的云顶情况。层状云降水阶段,云雷达反射率随高度降低增长缓慢,雨滴在下落过程中受蒸发和碰并的共同作用,反射率降低。与层状云降水相比,层积混合云降水的碰并效应强,且由于前期降水对近地面的增湿作用,使云下蒸发弱。对流云降水阶段,反射率的增长主要发生在冰水混合层,有利于大滴的产生,拓宽了云滴谱,提高了碰并效率。  相似文献   

3.
刘鹏  傅云飞 《大气科学》2010,34(4):802-814
本文利用热带测雨卫星(TRMM)上搭载的测雨雷达(PR)十年的探测结果, 对夏季中国南方对流降水和层云降水的气候特征进行了分析。研究结果表明:夏季中国南方层云降水频次较对流降水频次高出两倍以上, 而对流降水强度至少是层云降水强度的4倍; 就整个中国南方而言, 这两种类型的降水对总降水量贡献相当。日变化分析表明夏季中国南方大部分地区的对流降水主要出现在午后, 层云降水出现时间并不集中, 但这两类降水的频次日变化均显示了明显的地域性特征; 对降水廓线日变化的分析结果表明, 对流降水和层云降水廓线的日变化主要表现在“雨顶”高度的日变化, 即对流降水云的厚度有明显的日变化变化特征, 不同地区的降水廓线存在明显的差异。降水率剖面分析结果显示了对流降水的“雨顶” 高度日变化较层云降水剧烈, 降水率的日变化则相反, 且层云降水率的地域性特征更强。  相似文献   

4.
全球气候模式(GCM)中云的参数化方案具有不确定性,了解云的时、空变化能为参数化方案提供有效参考。利用搭载在属于A-Train卫星序列的CloudSat和CALIPSO上的94 GHz云廓线雷达(CPR)以及正交极化云-气溶胶激光雷达(CALIOP)联合的2级云分类产品,分析了2007年3月-2010年2月8种云类及三相态的云量地理分布、纬向垂直分布的季节变化特征以及云层分布概率。结果发现,卷云的分布体系与深对流云相似,主要集中在西太平洋暖池、全球各季风区及赤道辐合带,分布格局与气压带、风带季节性移动一致。层云与层积云主要分布在中低纬度非季风区以及中高纬度的洋面上。高积云与高层云的分布形成明显的海陆差异,雨层云与积云的分布形成明显的纬度差异。冰云分布与卷云相似,云高随纬度递增而递减;水云分布与层积云相似,平均分布于2 km高度;混合云集中于高纬度地区及赤道辐合带,中纬度地区随纬度变化集中于海拔0-10 km的弧形带。层状云多以多层云形式出现,积状云多以单、双层云的形式出现,层状云的云重叠现象比积状云更显著。积状和层状云的分布特征与积云和层云降水的分布特征基本一致,验证了不同类型降水的卫星观测结果,同时为气候模式的云量诊断方案提供对比验证的数据。   相似文献   

5.
“碧利斯”(0604)暴雨过程不同类型降水云微物理特征分析   总被引:2,自引:3,他引:2  
本文利用"碧利斯"(0604)暴雨增幅过程高分辨率的数值模拟资料, 将降水分成对流降水和层云降水, 对比分析了不同类型降水云微物理特征和过程的差异, 探讨了不同类型降水对暴雨增幅的贡献, 结果指出:(1)暴雨增幅前, 降水基本为层云降水, 对流降水只存在于零星的几个小区域, 暴雨增幅发生时段, 对流降水所占比例较暴雨增幅前有显著增加, 平均降水强度达层云降水强度的3倍多。(2)暴雨增幅时段, 云系发展更加旺盛, 云中各种水凝物含量较增幅前明显增加, 其中, 对流和层云降水区云中水凝物含量均有一定程度增长, 但对流降水区增加更显著;而无论增幅前还是增幅时段, 对流降水区云中水凝物含量均要明显大于层云降水区, 并且两者的这种差异随着地面降水强度的增强而增大。(3)暴雨增幅前后, 对流降水区雨滴的两个主要来源最终均可以追踪到云水, 通过云水与大的液相粒子(雨滴)和大的固相粒子(雪)之间、以及大的固相粒子(雪和霰)之间的相互作用和转化, 造成雨滴增长, 并最终形成地面降水, 而层云降水区中与雨滴形成相关的上述主要云微物理过程明显变弱, 但层云降水区中暴雨增幅时段的上述过程又要强于增幅前, 说明层云降水对暴雨增幅也有一定贡献。  相似文献   

6.
对云中微物理过程的研究是研究云降水形成过程和人工影响降水的重要基础,目前对积层混合云的对流区/对流泡中的微物理结构了解甚少。本文利用河北省“十三五”气象重点工程——云水资源开发利用工程的示范项目(2017~2019年)“太行山东麓人工增雨防雹作业技术试验”飞机和地面雷达观测数据,重点分析研究了2017年5月22日一次典型稳定性积层混合云对流泡和融化层的结构特征。研究结果表明,此次积层混合云高层存在高浓度大冰粒子,冰粒子下落过程中的增长在不同区域存在明显差异,在含有高过冷水含量的对流泡中,冰粒子增长主要是聚并和凇附增长,而在过冷水含量较低的云区以聚并增长为主。由于聚并增长形成的大冰粒子密度低,下落速度小,穿过0℃层时间更长,出现大量半融化的冰粒子,使融化现象更为明显。镶嵌在层状云中的对流泡一般处于0℃~-10℃(高度4~6 km)层之间,垂直和水平尺度约2 km,最大上升气流速度可达5 m s-1。对流泡内平均液态水含量是周围云区的2倍左右,小云粒子平均浓度比周围云区高一个量级,大粒子(直径800 μm以上)的浓度也更高。在具有较高过冷水含量的对流泡中降水形成符合“播撒—供给”机制,但在过冷水含量较低的区域并不符合这一机制。  相似文献   

7.
2014年夏季青藏高原云和降水微物理特征的数值模拟研究   总被引:2,自引:0,他引:2  
唐洁  郭学良  常祎 《气象学报》2018,76(6):1053-1068
为了加强对青藏高原(高原)云和降水微物理特征的深入认识,采用高分辨率中尺度数值预报模式(WRF),对第三次青藏高原大气科学试验2014年7月3-25日发生的6次不同强度云和降水过程进行了数值模拟分析。研究结果表明:(1)青藏高原夏季云和降水过程具有独特性。高原夏季对流的促发机制主要是午后高原加热造成的,云和降水具有明显的日变化。午夜后,对流性降水一般转化为层状云降水,具有明显的0℃层回波亮带,并且会产生强降水。大部分对流云云顶高度超过15 km(海拔高度),最大上升气流速度为10-40 m/s。(2)6次云过程中均具有高过冷云水含量,主要分布在0—-20℃层,冰晶含量主要分布在-20℃层以上的区域,强盛的对流云中,可出现在-40℃层以上区域;雨水集中分布在融化层之下,说明其主要依赖降水性冰粒子的融化过程;雪和霰粒子含量高,分布范围广,说明云中冰相过程非常活跃。(3)高原夏季云中水凝物的转化过程和降水的形成机理具有明显特点。霰粒子的融化过程是地面雨水的主要来源,暖雨过程对降水的直接贡献很小,但通过暖雨过程形成的过冷雨滴的异质冻结过程对云中霰胚的形成十分重要。霰粒子的增长主要依靠凇附过程以及聚并雪晶的增长过程。   相似文献   

8.
范雯露  景晓琴  杨璟  周思雨 《大气科学》2022,46(5):1113-1131
混合相态层状云与对流云的微物理特征有很大的差异性,但现阶段数值模式中并没有充分考虑两者的区别,这是导致云降水的模拟有较大不确定性的原因之一。为了加深对层状云与对流云的微物理特征差异的理解,并为模式的验证和参数化开发提供支撑,本文基于在中落基山地区进行的Ice in Clouds Experiment—Layer Clouds(ICE-L)项目和High Plain Cumulus(HiCu)项目的飞机观测资料,定量对比分析了该地区大陆性混合相态冬季较浅薄的层状云与较弱及中等强度的夏季对流云的微物理特征。其中,粒子图像和粒子谱通过2D-Cloud和2D-Precipitation探头得到,液态水含量通过热线式King探头测量得到,冰水含量基于粒子谱计算得到。主要结论有:(1)在?30°C~0°C的温度层范围内,夏季对流云内的液态水含量比冬季层状云高一个数量级,冰水含量高一到两个数量级,并且在对流云云顶附近观测到更多的过冷水。此外,夏季对流云中液态水含量在?20°C~0°C上随温度降低而升高,而冬季层状云则相反。夏季对流云中更活跃的冰晶生成和生长过程使得云内液态水质量分数小于层状云。(2)冬季层状云与夏季对流云内相态空间分布极不均匀。随着温度从0°C降低到?30°C,在冬季层状云中冰晶发生贝吉龙过程,云中的过冷水为主的区域向混合相态和冰相转化。而夏季对流云中相态结构更为复杂,体现了对流云中复杂的冰水相互作用。(3)在?30°C~0°C的温度范围内,夏季对流云的粒子谱宽度大于冬季层状云。随着温度的降低,冬季层状云与夏季对流云均存在粒子谱增宽的现象。(4)冬季层状云中,温度低于?20°C时冰晶主要为无规则状,在?20°C~?10°C观测到了辐枝状和无规则状冰晶,在?10°C以上观测到了柱状和无规则状冰晶,说明冰晶的生长主要为凝华增长和碰并增长。而夏季对流云以冻滴、霰粒子与不规则冰晶为主,说明主要为液滴冻结、淞附增长和碰并增长为主。(5)在夏季对流云较强的上升气流中存在较高的液态水含量,但垂直速度与云内冰水含量没有明显的相关性。  相似文献   

9.
傅云飞  潘晓  刘国胜  李锐  仲雷 《大气科学》2016,40(1):102-120
本文利用热带测雨卫星(TRMM, Tropical Rain Measuring Mission)第七版逐日逐轨测雨雷达(PR, Precipitation Radar)及可见光和红外扫描仪(VIRS, Visible and Infrared Scanner)的融合数据集,研究了夏季青藏高原上降水类型的特征.统计结果表明第七版PR降水回波强度及降水率廓线资料(2A25)仍旧误判青藏高原上以层云降水为主(比例高达85%);以云顶相态定义的青藏高原降水类型统计表明,冰相云顶和冰水混合相云顶的降水分别占43%和56%;以降水回波顶高度定义的降水类型统计表明,深厚弱对流降水和浅薄降水分别占77%和22%,而深厚强对流降水仅占1%.空间分布的统计表明,冰相云顶降水和冰水混合相云顶降水的频次和强度自高原西部向高原东部和东南部增加,其降水回波顶高度自高原西、中部向东部降低.深厚强对流降水和浅薄降水的频次由西向东增加,而深厚弱对流降水频次分布是西少、北少、南多,高原南部比北部的深厚弱对流降水频次高出近1倍;深厚弱对流降水和浅薄降水的平均强度也表现了自高原西部、中部向东部的增大,而其降水回波顶高度分布则相反.总体上,夏季青藏高原降水频次和强度自西向东增多和增大,而云顶和降水回波顶高度则相反.  相似文献   

10.
利用FY-2H,Aqua,CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation)和GPM(Global Preciptation Measurement)卫星产品,对比同在浙江温岭沿海登陆且路径相似的台风利奇马(1909)和...  相似文献   

11.
Using the numerical model of mixed convective-stratiform clouds(MCS)in the paper(Hong1997)and the averaged stratification of torrential rain processes,the evolution processes,interaction of the two kinds of clouds,structure and the precipitation features in the MCS toproduce heavy rain are simulated and studied,and the physical reasons of producing torrential rainare analysed.The results indicate that the stratiform cloud surrounding the convective cloudbecomes weakened and dissipates in the developing and enhancing of the convective cloud,and therainfall rate and water content in the stratiform cloud increase as the distance from the convectivecloud becomes larger.The numerical experiments find out that the stratiform cloud provides abenificial developing environment for the convective cloud,i.e.,the saturated environment and theconvergence field in the stratiform cloud help to lengthen the life cycle of the convective cloud,produce sustained rainfall with high intensity and intermittent precipitation with ultra-highintensity.These and the ice phase microphysical processes are the main factors for the torrentialrain formation and the MCS is a very effective precipitation system.  相似文献   

12.
青藏高原和四川盆地夏季对流性降水特征的对比分析   总被引:3,自引:1,他引:2  
李典  白爱娟  薛羽君  王鹏 《气象》2014,40(3):280-289
本文利用TRMM(Tropical Rainfall Measure Mission)多种探测结果,针对青藏高原和四川盆地各两次对流性降水天气进行了对比分析,结果表明:(1)高原降水系统以对流云降水为主,弱降水样本数量高,由孤立零散的块状降水云团组成,对流中心离散,降水范围小,雨区极不均匀,垂直发展厚度浅薄,降水粒子数量少,雨滴小,潜热释放以地面以上2~5 km高度层为主,夏季近地面层冰晶粒子含量高,降水过程中云顶亮温与地表雨强之间的相关性差,云顶亮温越高的对流云团其闪电频数越高。(2)盆地降水系统强降水样本数量高,由一个主降水系统和周边零散的降水云团组成,降水范围大,对流中心相对集中,雨区较均匀,垂直发展厚度高,对流系统深厚,雨滴大并集中,潜热释放呈一致的双峰型结构,峰值分别出现在7和16km高度上,冰雹粒子在对流层较高层含量高,云顶亮温与地表雨强之间呈显著的负相关,盆地的闪电频数显著高于高原地区,且闪电活动主要集中在亮温偏低的降水云体中。  相似文献   

13.
利用热带测雨卫星(TRMM)的降水雷达(PR)和微波成像仪(TMI)连续2个轨道的探测结果,分析了2013年6月26—29日发生在江西省北部地区的中尺度降水过程不同降水阶段的降水水平结构、雨顶高度、降水廓线的变化特征。结果表明,此次降水过程由强对流云降水逐渐演变为对流性较弱的层状云降水。对流云降水阶段降水系统由成片层状降水云团中分布的多个零散强对流降水云团组成,降水分布不均匀,强对流云降水对总降水量的贡献大。层状云降水阶段,层状云中强对流单体消失,对流云降水像素及对流云降水率对总降水量的贡献减少,降水雨强谱变小,降水高度逐渐降低,云体高层降水量减少。对流云降水和层状云降水廓线存在差异,最大降水率出现的高度越高且中高层降水量越大,降水的对流性则越强。  相似文献   

14.
利用TRMM卫星资料对青藏高原地区强对流天气特征分析   总被引:5,自引:0,他引:5  
李典  白爱娟  黄盛军 《高原气象》2012,31(2):304-311
利用热带测雨卫星TRMM(Tropical Rainfall Measure Mission)多种探测结果,结合NCEP再分析资料,研究了发生在青藏高原地区的一次强对流天气特征,综合分析了高原地区对流云特殊的水平、垂直结构特征。结果表明:(1)该强对流降水系统由几个孤立、零散的块状降水云团组成,以深厚弱对流降水为主,微波亮温的低值区也呈孤立、零散的块状分布,并且整个对流系统的云顶高度一致偏高,深厚强对流降水的雨谱主要集中在1~20mm.h-1的范围内,90%以上的深厚弱对流降水样本数和降水量都集中在0~5mm.h-1范围内,在垂直方向上呈被"挤压"状态。除云冰粒子集中在6~18km高度外,可降冰、可降水和云水粒子都集中在低层8km以下,冰雹天气表现为可降冰粒子在低层含量偏高。(2)高原地区强对流天气的特征与其他地方的不同,表现为雨强较小,比平原地区明显偏弱,且对流云降雨样本在不同降雨率范围内分布不均匀,降水云团雨顶高度也远低于平原地区的对流云,地表降水率大值区与微波辐射亮温低值区呈不完全对称分布,潜热释放呈单峰型。(3)高原地区强对流系统发生时,垂直上升运动在400hPa达到最大,水汽主要集中在400hPa高度以下的范围内。  相似文献   

15.
王洪  张佃国  王文青  王俊  李毅  王烁 《大气科学》2022,46(4):886-902
基于地基云雷达、微雨雷达和天气雷达等遥测设备观测资料,结合挂载KPR云雷达和DMT粒子测量系统的飞机平台,详细分析了山东积层混合云降水过程的云降水微物理结构特征。结果表明,积层混合云降水过程呈现层状云和对流云降水特征。零度层以上,5~6 km高度层内,对流云降水多普勒速度和谱宽均大于层状云,说明对流云降水环境垂直气流、粒子尺度等均大于层状云。对流云降水,云雷达和微雨雷达时空剖面上出现由衰减造成的“V”字形缺口,云雷达衰减程度大于微雨雷达,且随高度增加,衰减越大。层状云降水,零度层亮带附近,雷达反射率因子跃增高度比多普勒速度高80 m,多普勒速度跃增高度又比谱宽高20 m。降水云系零度层附近降水机制复杂,粒子形态有辐枝冰晶聚合物、针状冰晶聚合物和云滴;0°C层以上,5~6 km处,对流云降水的多普勒速度和谱宽均大于层状云降水,即对流云降水环境垂直气流、粒子尺度范围等均大于层状云降水。  相似文献   

16.
河北春季一次飞机人工增雪的综合分析   总被引:1,自引:0,他引:1  
2013年4月19日,河北省人工影响天气办公室在河北中南部地区根据云系特点首次采用多层次水平催化和垂直验证的方式对层状云进行人工催化和探测。本文利用机载仪器所取得的飞机探测资料,结合实时天气、卫星、雷达、探空和雨量观测资料,分析了河北春季层状云增雪作业的技术指标,探讨了航测微物理参量和卫星、雷达、探空等资料在作业中的应用。结果表明:云在发展期雷达回波由15 dBZ逐步上升到25-35 dBZ,卫星反演的云顶高度、云顶温度、有效粒子半径、光学厚度等都有增加;云在中后期有效粒子半径、光学厚度、液水路径迅速下降,雷达回波同时减弱。在高度3 177-5 723 m之间过冷云滴达100-700个/cm^3,含水量在0.01 g·m^-3左右,最大0.081 g·m^-3,云粒子主要在此增长,形成降水粒子,该区间适宜催化。作业后,影响区内云体发展,雷达回波增强,出现35 dBZ强回波,且强回波中心扩大;卫星反演的云顶高度、光学厚度等比对比区有明显增加。  相似文献   

17.
积层混合云结构特征及降水机理的个例模拟研究   总被引:2,自引:1,他引:1  
何晖  高茜  刘香娥  周嵬  贾星灿 《大气科学》2015,39(2):315-328
积层混合云是我国一种重要的降水系统, 其降水既有对流云又有层状云特征。基于积层混合云的重要性, 本文利用中尺度数值模式WRF(Weather Research and Forecasting Model), 结合三维粒子运行增长模式对2012年5月29日北京地区的一次积层混合云降过程进行了模拟研究。模拟的降水与雷达回波与实测结果基本一致。在此基础上, 重点分析了混合云系中积状云与层状云各自的微物理结构特征与降水的发生机理等。结果表明:降水过程云内存在着明显的“播种—供给”机制, 层状云中“播种—供给”机制相对简单。而对流云区中由于降水粒子可以发生上下多次的循环增长, “播种—供给”机制可在云的上下层间双向进行, 云中粒子群可以增长得更大。在积层混合云中, 在低层, 层状云中已有的水凝物粒子进入内嵌的积云块中, 而在高层水成物粒子又从积云中落到层云中, 积层混合云系充分发挥了积云和层云各自的优势, 从而降水效率较高。  相似文献   

18.
汪会  郭学良 《气象学报》2018,76(6):996-1013
为了加强对青藏高原深对流云垂直结构的深入认识,利用TRMM、CloudSat和Aqua多源卫星观测资料及地基垂直指向雷达(C波段调频连续波雷达和KA波段毫米波云雷达)资料,对第三次青藏高原大气科学试验期间2014年7月9日13-16时(北京时)发生在那曲气象站附近的深厚强对流云和那曲气象站以西100 km左右的深厚弱对流云的垂直结构特征进行了分析,得到的结果如下:(1)深厚强对流云和深厚弱对流云的水平尺度均较小(10-20 km),垂直发展高度较高(15-16 km,均指海拔高度);深厚强对流云在0℃层以下雷达反射率因子递增非常快,表明对流云内固态降水粒子下落至0℃层以下后融化过程有很重要的作用;在对流减弱阶段有明显的0℃层亮带出现,亮带位于5.5 km左右(距地1 km);(2)对比TRMM测雨雷达和C波段调频连续波雷达观测到的雷达反射率因子,发现TRMM测雨雷达在11 km以下存在高估;(3)深对流云主要为冰相云,云内10 km以上主要是丰富小冰粒子,而10 km以下是较少的大冰晶粒子;深厚强对流云和深厚弱对流云的微物理过程都主要包括混合相过程和冰化过程,混合相过程分为两种:一种是-25℃(深厚强对流云)或-29℃(深厚弱对流云)高度以下以凇附增长为主,另一种是该高度以上主要以冰晶聚合、凝华增长为主,该过程冰晶粒子有效半径增长较快。这些空基和地基的观测证据进一步揭示了青藏高原深对流云的垂直结构特征,为模式模拟青藏高原深对流云的检验提供了依据。   相似文献   

19.
上海地区几类强降水雨滴谱特征分析   总被引:3,自引:3,他引:0  
谢媛  陈钟荣  戴建华  胡平 《气象科学》2015,35(3):353-361
用Parsivel激光降水粒子谱仪资料对2013年上海地区4—10月份期间4种类型 (层状云、对流暖云主导型、对流冷云主导型和强台风影响下的混合暖云型) 降水过程的雨滴谱特征进行了分析。通过平均雨滴谱及其拟合特征、雨滴数密度与含水量分布、雨滴尺度与速度二维谱分布等对比分析发现:各类降水中, 雨滴谱的峰值结构与雨强大小有关, 其中直径介于0.187~1.312 mm的小雨滴均出现峰值且总数最多。各尺度雨滴数密度及其比例决定了其降水量贡献比, 在冷云强降水中的雨强贡献最大的雨滴尺度要显著大于其他3种类型。雨滴谱宽按大小排列依次为对流冷云主导型、混合暖云型、对流暖云主导型和层状云。最后综合运用雨滴谱、雷达、雨量站、闪电等观测资料对9月13日对流冷云主导型降水过程进行分析后发现:在雷暴的演变过程中, 雨滴谱特征与雷达反射率因子、垂直液态水含量、自动站雨强、闪电频次等要素均有较好的相关性。冷云产生的冰晶和冰雹融化后的大雨滴进入中低层的广谱小雨滴群, 并通过破碎分裂增加了大雨滴的形成概率, 尤其是捕捉碰并过程更加快了大雨滴的增长速度, 使雨强在短时间内迅速加强。雨滴谱中各档粒子数的演变, 揭示了降水强度的变化, 用雨滴谱资料可有效弥补现有雷达定量估测降水的偏差, 且在冷云中改善明显。  相似文献   

20.
In this study,two convective-stratiform rainfall partitioning schemes are evaluated using precipitation and cloud statistics for different rainfall types categorized by applying surface rainfall equation on grid-scale data from a two-dimensional cloud-resolving model simulation.One scheme is based on surface rainfall intensity whereas the other is based on cloud content information.The model is largely forced by the large-scale vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment(TOGA COARE).The results reveal that over 40% of convective rainfall is associated with water vapor divergence,which primarily comes from the rainfall type with local atmospheric drying and water hydrometeor loss/convergence,caused by precipitation and evaporation of rain.More than 40% of stratiform rainfall is related to water vapor convergence,which largely comes from the rainfall type with local atmospheric moistening and hydrometeor loss/convergence attributable to water clouds through precipitation and the evaporation of rain and ice clouds through the conversion from ice hydrometeor to water hydrometeor.This implies that the separation methods based on surface rainfall and cloud content may not clearly separate convective and stratiform rainfall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号