首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
研究了星载积分路径差分吸收(IPDA)激光雷达系统工作波长与大气CO2 分子柱线浓度测量误差之间的关系,并优化波长以降低测量误差。首先介绍CO2 分子柱线浓度测量原理,理论分析并模拟仿真了系统随机误差、温度不确定性误差、频率不稳定性误差和水蒸汽干扰误差随激光雷达工作波长变化关系,优化工作波长使浓度测量总误差达到最小值。最终选定激光雷达on-line波长为6361.2250cm-1,off-line 波长为6 360.99 cm-1,并仿真计算得到温度不确定性为1 K、频率不稳定度为0.6 MHz 时,共导致的CO2 柱线浓度测量误差为0.58710-6,达到CO2 浓度测量精度110-6 的要求,为星载IPDA 激光雷达系统实现高精度CO2 柱线浓度探测优化系统参数提供了参考。  相似文献   

2.
星载积分路径差分吸收(Integrated Path Differential Absorption, IPDA)激光雷达是一种有效的高精度(1 ppm)全球CO2 柱线浓度测量手段。结合 其基本工作原理分析了CO2 柱线浓度反演技术方法,并优化了工作波段和工作波长。分析了由所选波段激光频率的稳定性、 激光带宽和激光光谱纯度等激光雷达发射源参数变化所带来的CO2 柱线浓度测量误差,并给出了经过优化的设计参数。研究了 用IPDA激光雷达实现双波长脉冲发射激光的技术方法,并给出了实验验证结果,实现了1.572 m波段单脉 冲能量大于50 mJ的激光输出。  相似文献   

3.
中科院安徽光机所研制了一台ARL-1二氧化碳拉曼激光雷达,本文结合实际大气条件,利用拉曼激光雷达的观测例子和分析仪观测结果,分析拉曼激光雷达测量大气二氧化碳的不确定性。分析结果表明,拉曼激光雷达在对流层低层具有良好的稳定性和较高的测量精度,在较好的天气条件下,1km高度范围内,ARL-1拉曼激光雷达的测量不确定性可控制在1.2ppm内,在2km高度范围内可控制在2.5ppm内。  相似文献   

4.
徐玲  卜令兵  蔡镐泽  萨日娜  杨彬  周军 《红外与激光工程》2018,47(10):1030002-1030002(8)
差分吸收激光雷达是高精度测量大范围二氧化氮浓度的有效途径。介绍了差分吸收激光雷达原理及系统结构,基于可调谐固体激光吸收技术,以0.01 nm为步长,测量了二氧化氮在3.410~3.435 m吸收光谱,实验结果表明,在1.0 atm(1 atm=1.013105 Pa)、25℃情况下,所测吸收光谱与模拟计算吸收光谱相关系数为92.01%,基于实测吸收光谱分析确定了二氧化氮测量激光波长对为on-line 3.424m、off-line 3.414m。并研究了差分吸收激光雷达二氧化氮测量信号预处理方法和去噪算法,仿真计算结果表明,采用信号预处理结合多重自相关检测法,可有效将1 km内模拟探测所得二氧化氮浓度反演结果误差降为0.1 mg/m3。  相似文献   

5.
差分吸收激光雷达发射光束与接收视场的重叠区域用几何因子函数来描述,几何因子是差分吸收激光雷达的重要参数。提出了一种实验方法,实验使用米散射激光雷达和差分吸收激光雷达同时测量信号,通过对比分析两台激光雷达采集信号计算得到的气溶胶散射比廓线,获得差分吸收激光雷达的几何因子。该方法的优点在于不需要预先得到精确度高的激光雷达参数,比如望远镜直径,光束发散角,望远镜接收视场角等。该方法的应用有利于减少近地面差分吸收激光雷达测量臭氧廓线的误差,提高差分吸收激光雷达的探测性能,有助于研究近地面层的臭氧时空分布特征。  相似文献   

6.
差分吸收激光雷达探测大气CO_2精度分析   总被引:1,自引:0,他引:1  
为减小距离差分吸收激光雷达探测大气CO2浓度的探测误差,理论分析了探测精度,对差分吸收探测系统误差进行了数值分析,对基于1.6 μm光纤激光器相干探测CO2系统进行了仿真计算.结果表明:差分吸收截面越大,空间分辨率越低,回波信噪比越高,气体浓度的探测误差越小.当大气CO2的差分吸收光学厚度т为0.55时,相干探测系统具有最小误差变化百分比,此时探测精度最高.随着探测高度增大, 1.6 μm光纤激光相干探测系统精度逐渐降低,在1 km高度以内可以探测到34 ppm的大气CO2变化.  相似文献   

7.
左维康  朱亚丹  邱敏  刘继桥  陈卫标 《红外与激光工程》2018,47(4):406002-0406002(7)
星载积分路径差分吸收(IPDA)激光雷达是全天时全球范围内探测CO2浓度的一种有效的方法,而作为接收系统关键元件的光电探测器对激光雷达系统性能有着较大的影响。雪崩光电二极管(APD)有着较大的动态范围与高的响应度,因此它在星载激光雷达中广泛应用。介绍了IPDA激光雷达和APD探测器的工作原理,并根据实际工作条件,测试了一款APD探测单元的响应度、动态范围、不同光功率下的信噪比等主要性能参数,分析了这些性能参数对星载激光雷达CO2浓度的反演带来的影响。结果表明,在CO2浓度为400 ppm(1 ppm=10-6),吸收波段信号的探测器输出电压在280~980 mV范围内时,APD探测器本身的非线性和噪声造成的误差小于0.8 ppm。  相似文献   

8.
差分吸收激光雷达测量环境SO2   总被引:6,自引:1,他引:5  
提出了一种新的差分吸收激光雷达(DIAL)技术探测大气环境SO2。利用Nd:YAG激光器的四倍频266.0nm抽运甲烷和氘气,可以获得它们的一级斯托克斯拉曼频移波长288.38nm和289.04nm。SO2对波长为289.04nm的激光吸收较强,对288.38nm的激光吸收较弱,波长对288.38nm和289.04nm可用于大气SO2的测量。利用这种技术,建立了一台测量大气SO2的差分吸收激光雷达,并进行了实际测量和初步研究,对激光雷达测量SO2误差的主要来源进行了分析.并估计了测量误差的大小。差分吸收激光雷达的测量结果与仪器测量结果相比具有可比性。  相似文献   

9.
O4斜柱浓度的准确获取,对气溶胶廓线反演具有重要意义。介绍了基于被动多轴差分吸收光谱仪(MAX-DOAS)监测O4斜柱浓度的误差修正方法,用于准确获取O4斜柱浓度。通过对比30°仰角O4斜柱浓度MAX-DOAS测量结果和大气辐射传输模型模拟结果,获得修正系数,利用修正系数修正各个角度的斜柱浓度值,消除O4吸收截面不准确造成的反演结果误差,提高了O4斜柱浓度精度。研究方法应用于合肥地区O4斜柱浓度的准确监测,为下一步气溶胶廓线精确反演提供了数据支持。  相似文献   

10.
近红外通道观测大气CO2含量是利用其对太阳辐射的吸收作用,温度是影响吸收气体吸收的一个重要因子,文中讨论了CO2观测的温度敏感性.首先阐述了温度对气体吸收谱线的强度、增宽的影响;然后根据CO2反演过程中使用的大气温度产品的精度水平,利用逐线积分辐射传输模型模拟计算了1K的随机温度误差对垂直大气观测的影响,以及由此导致的CO2反演误差,并与模拟的1 ppm和2 ppm的CO2浓度变化所造成的观测与反演变化量进行了比较.通过对比分析六种大气模式下的模拟计算结果,得出1K大气随机温度误差是影响高精度大气CO2观测反演的重要因子.  相似文献   

11.
介绍了自行研制的车载差分吸收激光雷达(DIAL)的系统结构和测量原理.利用可调谐激光器输出波长为286.3 nm和286.9 nm的激光测量SO2,测量范围为500m~3 km.该雷达在北京和合肥对SO2进行了实地测量,给出实测的部分典型结果,测量结果与地面仪器定点测量的结果一致.分析了误差的几种影响因素,总的测量误差在距离分别率为300m时小于7×10-9.  相似文献   

12.
姿态角随机测量误差对机载激光扫描成像的影响   总被引:2,自引:1,他引:1  
研究了姿态角随机测量误差对机载激光雷达激光脚点定位精度和数字表面模型(DSM)精度的影响。分析了机载激光雷达的工作原理,推导了姿态角随机测量误差与激光脚点定位误差之间的传递关系。通过数值仿真,模拟了3种地形,研究了姿态角随机测量误差对点云及DSM的影响规律。通过半实物仿真实验,定量评价了姿态角随机测量误差对激光脚点定位精度和DSM精度的影响。仿真和实验结果表明,姿态角随机测量误差造成激光脚点定位精度和DSM精度降低。姿态角随机测量误差造成激光脚点平面坐标误差增加较大,是高程误差的4~5倍;当姿态角随机测量误差增大10倍时,激光点云三维坐标误差也增大约10倍,而DSM误差则增大40倍左右。  相似文献   

13.
自适应滤波在拉曼激光雷达数据处理中的应用   总被引:1,自引:0,他引:1  
在拉曼(Raman)激光雷达探测CO2实验中所采集的拉曼回波信号具有比较大的统计误差,有效减小统计误差,获得较高的探测精度是非常重要的工作.利用自适应滤波器对拉曼回波信号分段进行数据处理,可得到在分段的各个空间间隔内的随距离几乎不变的CO2混合比统计误差,经过自适应滤波器对信号进行处理后,Raman激光雷达对合肥地区夜晚CO2气体浓度探测达到比较高的测量精度,在1.5~5 km高度范围内,CO2浓度统计误差最大为2.5%,5~8 km统计误差最大为5%,8~10 km统计误差最大为10%.利用此技术也可以量化估计在较高的空间分辨率下满足探测精度要求的激光脉冲数.  相似文献   

14.
一套测量对流层臭氧的差分吸收激光雷达系统   总被引:1,自引:0,他引:1  
差分吸收激光雷达是探测对流层臭氧分布的一种先进工具。研制了一套车载差分激光雷达系统,系统基于NdYAG四倍频激光和拉曼频移技术产生紫外差分光源,并采用卡塞格林(Cassegrain)型望远镜,利用光栅光谱仪分离四波长的回波信号,使用光子计数和模拟采集相融合的方式采集数据。讨论分析了系统的测量精度并与臭氧探空仪进行了对比验证实验。实验结果表明,两台仪器测量的对流层臭氧具有很好的一致性,证实了车载差分吸收激光雷达系统及臭氧浓度分析软件的可靠性。  相似文献   

15.
拉曼差分法探测大气中的臭氧   总被引:3,自引:0,他引:3  
介绍了拉曼差分法测量对流层底部污染物O_3的基本原理。计算和研究了N_2,O_2的拉曼光谱强度分布特征,利用O_3对N_2,O_2紫外波段拉曼散射光的不同吸收特性,推导出O_3浓度反演公式;设计了拉曼差分激光雷达(Raman-DIAL)系统,该系统采用双通道分别接收N_2和O_2对紫外266 nm激光的拉曼散射光,通过拉曼差分法反演大气中O_3浓度。分析了激光雷达系统噪声的来源,对双通道滤光片提出了相应的要求;分析了大气中污染物SO_2,NO_2在紫外波段的吸收特性对拉曼差分法测量O_3的影响及造成的相对误差;利用差分激光雷达AML-2测得的O_3数据模拟了拉曼差分激光雷达系统N_2与O_2的拉曼信号,从而证实了该方法探测对流层底部大气臭氧含量垂直分布的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号