首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Microenergy dispersive X‐ray fluorescence (μ‐EDXRF) spectroscopy and scanning electron microscopy (SEM) were used to test the hypothesis that zirconia modified glass ionomer cement (GIC) could improve resistance to erosion‐abrasion to a greater extent than conventional cement. Bovine enamel (n = 40) and dentin (n = 40) samples were prepared with cavities, filled with one of the two restorative materials (GIC: glass‐ionomer cement or ZrGIC: zirconia‐modified GIC). Furthermore, the samples were treated with abrasion‐saliva (AS) or abrasion‐erosion cycles (AE). Erosive cycles (immersion in orange juice, three times/day for a duration of 1 min over a 5 day period) and/or abrasive challenges (electric toothbrush, three times/day for a duration of 1 min over a 5 day period) were performed. Positive mineral variation (MV%) on the enamel after erosion‐abrasion was observed for both materials (p < 0.05), whereas a negative MV% on the dentin was observed for both materials and treatments (p < 0.05). The SEM images showed clear enamel loss after erosion‐abrasion treatment and material degradation was greater in GIC_AE compared to those of the other groups. Toothbrush abrasion showed a synergistic effect with erosion on substance loss of bovine enamel, dentin, GIC, and ZrGIC restorations. Zirconia addition to the GIC powder improved the resistance to abrasive‐erosive processes. The ZrGIC materials may find application as a restorative material due to improved resistance as well as in temporary restorations and fissure sealants.  相似文献   

2.
Considering the importance and prevalence of dental erosion, the aim of this in vitro study was to evaluate the influence of different modes of pulse emission of CO2 laser associated or not to acidulated phosphate fluoride (APF) 1.23% gel, in controlling enamel erosion by profilometry. Ninety‐six fragments of bovine enamel were flattened and polished, and the specimens were subjected to initial erosive challenge with hydrochloric acid (pH = 2). Specimens were randomly assigned according to surface treatment: APF 1.23% gel and gel without fluoride (control), and subdivided according to the modes of pulse CO2 laser irradiation: no irradiation (control), continuous, ultrapulse, and repeated pulse (n = 12). After surface treatment, further erosive challenges were performed for 5 days, 4 × 2 min/day. Enamel structure loss was quantitatively determined by a profilometer, after surface treatment and after 5 days of erosive challenges. Two‐away ANOVA revealed a significant difference between the pulse emission mode of the CO2 laser and the presence of fluoride (P ≤ 0.05). The Duncan's test showed that CO2 laser irradiation in continuous mode and the specimens only received fluoride, promoted lower enamel loss than that other treatments. A lower dissolution of the enamel prisms was observed when it was irradiated with CO2 laser in continuous mode compared other groups. It can be concluded that CO2 laser irradiation in continuous mode was the most effective to control the enamel structure loss submitted to erosive challenges with hydrochloric acid. Microsc. Res. Tech. 78:654–659, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
The present study aims to evaluate the effect of brushing with fluoride dentifrice on teeth severely affected by erosion due to respiratory medicaments. Enamel (n = 50) and dentin (n = 50) bovine specimens were prepared and treated with artificial saliva (S‐control), acebrofilin hydrochloride (AC), ambroxol hydrochloride (AM), bromhexine hydrochloride (BR), and salbutamol sulfate (SS) and subjected to cycles of demineralization (immersing in 3 mL, 1 min, three times a day at intervals of 1 hr, for 5 days) followed by remineralization (saliva, 37°C, 1 hr). Simulated brushing with fluoridated toothpaste was performed using 810 strokes in a reciprocal‐action brushing simulator. Scanning electron microscopy, micro energy dispersive X‐ray fluorescence (μ‐EDXRF) spectroscopy and attenuated total reflection Fourier transform infrared (ATR FTIR) spectroscopy were then performed. μ‐EDXRF images showed extensive erosion after treatment with all medicaments. SEM images showed enamel erosion in order SS > BR > AC = AM > S after brushing and fluoridation. FTIR results were in agreement. In case of dentin, μ‐EDXRF measurements showed significant difference in mineral content (percent weight of calcium and phosphate) in SS + brushing + fluoridation treated enamel compared to control, while μ‐EDXRF images showed erosive effects in the order SS > AM>BR > AC = S post brushing + fluoridation. SEM images showed erosion in the order SS > AM = BR > AC > S post brushing + fluoridation. Again, FTIR multivariate results were in agreement. Overall, our study shows that proper oral care is critical when taking certain medication. The study also demonstrates the possible use of FTIR for rapid clinical monitoring of tooth erosion in clinics.  相似文献   

4.
Purpose: This work aims to study the erosion on restorative materials and on surrounding dentin. Fifty root dentin samples were obtained from bovine incisors. Methods: Twenty samples were not restored and thirty received cavity preparations. Samples were assigned to five groups: G1, G2: sound dentin (D); G3: composite resin (CR); G4: resin‐modified glass‐ionomer cement (RMGIC); G5: glass‐ionomer cement (GIC). The samples of groups 2–5 were submitted to six cycles (demineralization–remineralization). Samples were analyzed by micro energy‐dispersive X‐ray fluorescence spectrometry (μ‐EDXRF) and by scanning electron microscopy (SEM). Results: Mineral loss was greater in G2 samples than in RMGI > CR > GIC > D (control). SEM images showed pronounced dentin demineralization in groups 2 and 4. The acid erosion has a significant effect on mineral loss (Ca and P) of root dentin without restoration. Conclusions: Composite resin had the best chemical resistance to erosion among all the materials. Fluoride contained in GIC seemed to cause some protection, however, with material degradation. Chemical interaction of tooth‐colored dental materials with root dentin could be assessed by μ‐EDXRF. Microsc. Res. Tech. 75:703–710, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
Purpose: This study investigated the influence of collagen removal with calcium hypochlorite on the surface morphology of acid‐etched dentin and on the microleakage of composite restorations. In addition, the elemental composition (EC) of dentin after removal of the collagen fibrils was analyzed. Materials and Methods: Forty third molars received two cavities and were divided into four groups according to dentin treatment: CTRL—no pre‐treatment; Na10—10% NaOCl for 30 s; Ca10—10% CaOCl for 30 s, and Ca15—15% CaOCl for 30 s. The cavities were filled using an acetone‐based adhesive system and a resin composite; they were then subjected to thermal cycling for 5,000 cycles, immersed in methylene blue for 4 h and sectioned into 1‐mm thick slabs. Two examiners evaluated two slices per tooth using a stereomicroscope and assigned the degree of infiltration (scores 0–3). The data were analyzed using the Kruskal–Wallis (α = 0.05). Four teeth received surface treatment according to the groups and were submitted to SEM and EDS to carry at the EC. Results: There was no significant difference between the experimental groups (P = 0.533). CaOCl alters the morphology and surface composition of the dentin, resulting in an increase in the amount of calcium in the interface. Conclusions: When used prior to an acetone‐based adhesive system, CaOCl did not produce any differences in microleakage when compared to the CTRL group or to the Na10 group. Microsc. Res. Tech. 78:676–681, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
Background: Dental erosion is a risk factor for dental health, introduced by today's lifestyle. Topical fluoride applications in the form of varnishes and gel may lead to deposition of fluoride on enamel. Purpose: This in vitro study aimed to evaluate the effect of two fluoride varnishes and one fluoride gel on the dissolution of bovine enamel by acids. Methods: Enamel samples (72) were divided (n = 8): artificial saliva (control‐G1), Pepsi Twist® (G2), orange juice (G3), Duraphat® + Pepsi Twist® (G4), Duraphat® + orange juice (G5), Duofluorid® + Pepsi Twist® (G6), Duofluorid® + orange juice (G7), fluoride gel + Pepsi Twist® (G8), and fluoride gel + orange juice (G9). Fluoride gel was applied for 4 min and the varnishes were applied and removed after 6 h. The samples were submitted to six cycles (demineralization: Pepsi Twist® or orange juice, 10 min; remineralization: saliva, 1 h). Samples were analyzed by energy‐dispersive X‐ray fluorescence (144 line‐scanning). Results: The amount of Ca and P decreased significantly in the samples of G2 and G3, and the Ca/P ratio decreased in G3. Mineral gain (Ca) was greater in G9 samples than in G4 > G3 > G5 > G1, and (P) greater in G7 samples than in G9 > G4‐6 > G2‐3. Conclusions: The protective effect of Duofluorid® was significantly lower than fluoride gel against orange juice. The fluoride varnishes can interfere positively with the dissolution of dental enamel in the presence of acidic beverages. Fluoride gel showed the best protection level to extrinsic erosion with low costs. Microsc. Res. Tech., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Composite resin is a dental material susceptible to color change over time which limits the longevity of restorations made with this material. The influence of light curing units and different fluoride mouthrinses on superficial morphology and color stability of a nanofilled composite resin was evaluated. Specimens (N = 150) were prepared and polished. The experimental groups were divided according to the type of light source (halogen and LED) and immersion media (artificial saliva, 0.05% sodium fluoride solution‐manipulated, Fluordent Reach, Oral B, Fluorgard). Specimens remained in artificial saliva for 24‐h baseline. For 60 days, they were immersed in solutions for 1 min. Color readout was taken at baseline and after 60 days of immersion. Surface morphology was analyzed by Scanning Electron Microscopy (SEM) after 60 days of immersion. Color change data were submitted to two‐way Analysis of Variance and Tukey tests (α = 0.05). Surface morphology was qualitatively analyzed. The factor light source presented no significant variability (P = 0.281), the immersion media, significant variability (P < 0.001) and interaction between factors, no significant variability (P = 0.050). According to SEM observations, no difference was noted in the surface of the specimens polymerized by different light sources, irrespective of the immersion medium. It was concluded that the light source did not influence the color stability of composite, irrespective of the immersion media, and among the fluoride solutions analyzed, Fluorgard was the one that promoted the greatest color change, however, this was not clinically perceptible. The immersion media did not influence the morphology of the studied resin. Microsc. Res. Tech. 77:941–946, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
The purpose of this study was to evaluate the effect of different combinations of irrigating solutions and intracanal dressings in the pretreatment of bovine radicular dentin, using an experimental immature tooth model. Eighty healthy bovine teeth, simulated with incomplete rhizogenesis, were randomly distributed according to the protocols of root canal dentin pretreatment for a regenerative endodontic procedure (n = 10): Control (irrigation with distilled water); SH (irrigation with 1.5% Sodium Hypochlorite); EDTA (irrigation with 17% EDTA); SH/EDTA (irrigation with 1.5% SH + 17% EDTA); SH/CH/EDTA (irrigation with 1.5% SH + calcium hydroxide paste +17% EDTA); SH/MTAP/EDTA (irrigation with 1.5% SH + modified triple antibiotic paste + EDTA 17%); SH/TAP/EDTA (irrigation with 1.5% SH + triple antibiotic paste +17% EDTA) and SH/DAP/EDTA (irrigation with 1.5% SH + double antibiotic paste + EDTA 17%). After the completion of the protocol, the demineralization, the exposure of collagen fibers, and the dentin erosion was evaluated under scanning electron microscopy (SEM), by applying a score system (1–3) to classify the observed features. Statistical analysis was performed (Kruskal‐Wallis and Dunn Multiple Comparison tests—p < .05). SH/TAP/EDTA and SH/DAP/EDTA groups presented the highest rates of demineralization in both the coronal and middle thirds of the root (p < .05). In the SH/MTAP/EDTA group, the samples presented moderate demineralization. The samples from the SH/CH/EDTA group presented similar findings to the control group (p < .05). Conventional triple antibiotic (TAP) and double antibiotic (DAP) pastes promoted more pronounced morphological changes on the dentin surface.  相似文献   

9.
The aim of this study was to evaluate the effect of final irrigation protocols (17% EDTA, BioPure MTAD, SmearClear, and QMiX) on microhardness and erosion of root canal dentin. Fifty roots were sectioned transversely at the cement–enamel junction and each root was sectioned horizontally into 4‐mm‐thick slices. The samples were divided into five groups (n = 10) according to the final irrigation protocol: G1: distilled water (control group); G2: 17% EDTA; G3: BioPure MTAD; G4: SmearClear; and G5: QMiX. The dentin microhardness was then measured with a load of 25 g for 10 s. Initially, the reference microhardness values were obtained for the samples without any etching. The same samples were then submitted to the final irrigation protocols. A new measure was realized and the difference between before and after the procedures was the dentin microhardness reduction. In sequence, the specimens were submitted to SEM analysis to verify the dentinal erosion. The Kruskal Wallis and Dunn tests (α = 5%) were used to compare the results. The dentin microhardness decreased for all final irrigation protocols. There was no significant difference between groups 2, 3, 4, and 5 (P > 0.05), but this groups presented significant dentin microhardness reduction than G1 (P < 0.05). In G2, occurred the highest incidence of dentinal erosion (P < 0.05). 17% EDTA, BioPure MTAD, SmearClear, and QMiX promoted significant dentin microhardness reduction. Dentinal tubules erosion was promoted by 17% EDTA. Microsc. Res. Tech., 76:1079–1083, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Purpose of this in situ study was to evaluate the surface properties of eroded dentin specimens activated with three different matrix metalloproteinase (MMP) inhibitors (chlorhexidine [CHX], fluoride, green tea), black tea, and water. One hundred eighty dentin samples were prepared from extracted third molars and then samples divided into six groups. Ten volunteers were carried three specimens of each group, on acrylic palatal appliances, which were fabricated exactly for them (n = 3). Erosive cycles were done by immersing appliances in cup containing Cola and was followed by rinsing with test solutions. Microhardness values were measured. Surface properties were investigated by atomic force microscopy (AFM). Lowest change in microhardness was shown in fluoride group whereas negative control group (water) had the highest change. There were no statistically significant differences among surface roughness changes (p > .05). The least change in microhardness was seen in the fluoride group (13.05 ± 8.07), while the control group showed the highest change (33.80 ± 12.42) and was statistically significant when compared to other groups (p < .05). Besides lowest depth, values were shown in fluoride group as well. AFM evaluations showed macromolecular deposits on surfaces of fluoride, CHX, and black tea groups. No superior results were detected in CHX + fluoride group and black tea showed similar surface characteristics as green tea. Mouthrinses containing not only green tea but also black tea could be beneficial for patients with exposed dentin surfaces. Catechines and theaflavins in teas could be useful for improving surface quality.  相似文献   

11.
This in situ study evaluated the tubular occlusion caused by 4% TiF4 gel on the surface of eroded/abraded dentin. Sixty human dentin samples were eroded in vitro and assigned into six groups (n = 10) according to the in situ surface treatment and number of cycling days: 4% TiF4 gel applied once (TiF41), twice (TiF42), or three times (TiF43) followed by 2, 4, and 6 days of erosive/abrasive in situ cycling, respectively. Control groups (no treatment) were subjected to 2 (C1), 4 (C2), and 6 (C3) days of erosive/abrasive in situ cycling only. A seventh group (n = 10) was comprised by in vitro uneroded samples (UN), subjected to 6 days of in situ erosive/abrasive cycling. Each cycling day consisted on six erosive (0.5% citric acid, pH 2.6) and one abrasive events. Environmental scanning electron microscopy micrographs were taken. For all groups, blinded examiners assessed dentin tubules occlusion using visual scores (0—unoccluded, 1—partially occluded by granular deposits, 2—partially occluded by reduction in tubular lumen into diamond shape, 3—completely occluded) on images captured prior and after the in situ phase. Scheirer‐Ray‐Hare test demonstrated that treatments significantly affected tubule occlusion (p < .001). Dunn's test showed that tubule occlusion in TiF43 was significantly higher than in C1. Tubule occlusion in remaining groups did not differ from that observed in groups TiF43 and C1. Tubule occlusion was significantly higher after in situ phase. It may be suggested that TiF4, when applied three times, was able to positively change tubule occlusion of dentin samples.  相似文献   

12.
Various methods have been applied to evaluate the effect of erosion and abrasion. So, the aim of this study was to check the applicability of stylus profilometry (SP), surface hardness (SH) and focus‐variation 3D microscopy (FVM) to the analysis of human enamel and dentin subjected to erosion/abrasion. The samples were randomly allocated into four groups (n = 10): G1‐enamel/erosion, G2‐enamel/erosion plus abrasion, G3‐dentin/erosion, and G4‐dentin/erosion plus abrasion. The specimens were selected by their surface hardness, and they were subjected to cycles of demineralization (Coca‐Cola®‐60 s) and remineralization (artificial saliva‐60 min). For groups G2 and G4, the remineralization procedures were followed by toothbrushing (150 strokes). The above cycle was repeated 3×/day during 5 days. The samples were assessed using SH, SP, and FVM. For each substrate, the groups were compared using an unpaired t‐test, and Pearson correlation coefficients were calculated (α = 5%). For enamel, both profilometry technique showed greater surface loss when the erosion and abrasion processes were combined (P <0.05). The correlation analysis did not reveal any relationships among SH, SP, and FVM to G2 and G4. There were significant correlation coefficients (–0.70 and –0.67) for the comparisons between the FVM and SH methods in enamel and dentin, respectively, in G1 and G3. Choosing the ideal technique for the analysis of erosion depends on the type of dental substrate. SP was not sufficiently sensitive to measure the effects on dentin of erosion or erosion/abrasion. However, SP, FVM and SH were adequate for the detection of tissue loss and demineralization in enamel. Microsc. Res. Tech., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
The aim was to assess the effects of 1% peracetic acid (PAA) as a single endodontic irrigant on microhardness, roughness, and erosion of root canal dentin, compared with 2.5% sodium hypochlorite (NaOCl) and with 2.5% NaOCl combined with 17% EDTA. Forty human, single‐rooted tooth hemisections were submitted to Knoop microhardness test, before and after the following irrigation protocols: PAA = 1% PAA; NaOCl = 2.5% NaOCl; NaOCl‐EDTA‐NaOCl = 2.5% NaOCl +17% EDTA +2.5% NaOCl; and SS = saline. Another 40 roots were instrumented, irrigated with the same protocols, and sectioned longitudinally. The roughness analysis was performed on the mesial section using a confocal laser scanning microscope, whereas erosion was analyzed on each third of the distal section, using a scanning electron microscope. The data were analyzed using ANOVA and Tukey post‐tests, and Kruskal‐Wallis and Dunn post‐tests (α = .05). The PAA and NaOCl‐EDTA‐NaOCl groups showed no significant differences (p > .05); both promoted reduction in microhardness and increase in roughness, compared with the NaOCl and SS groups (p < .05). NaOCl‐EDTA‐NaOCl promoted higher erosion in the cervical and middle thirds than the other groups (p < .05); there was no difference among PAA, NaOCl, and SS (p > .05). There was also no difference among the groups regarding the apical third (p > .05). PAA used as a single endodontic irrigant caused reduction in root canal dentin microhardness and increase in roughness in a similar way to NaOCl‐EDTA‐NaOCl; however, PAA caused less erosion than NaOCl‐EDTA‐NaOCl.  相似文献   

14.
This study aimed to investigate dentin wettability and surface morphology after selective removal of carious lesion by erbium‐doped yttrium aluminum garnet (Er:YAG) laser, followed by dentin biomodification with carbodiimide (EDC) and chitosan (CHI). Seventy‐eight bovine dentin specimens were submitted to caries induction. Specimens were distributed according to methods of carious removal (n = 39): bur at low‐speed (40,000 rpm) or Er:YAG laser (noncontact mode, 250 mJ/pulse and 4Hz). All specimens were etched with 35% phosphoric acid, and subdivided according to dentin biomodification (n = 13): Control (no biomodification), EDC or CHI. The contact angle (n = 10) between adhesive system (3M ESPE) and dentin surface was measured by a goniometer. Eighteen specimens (n = 3) were analyzed by scanning electron microscopy. Data were analyzed by two‐way ANOVA and Tukey's test (α = .05). The method used to remove carious lesion did not influence the wettability of dentinal surface (p = .748). The angles produced on the remaining dentin after biomodification were influenced (p = .007). CHI promoted higher contact angles (p = .007) and EDC did not differ from the control group (p = .586). In the bur‐treated group, most tubules were open, regardless of which biomodifier was used. Laser modified the organic matrix layer. CHI promoted partially closed tubules in some areas while EDC exposed dentinal tubules. Regardless of which method was used for selective removal of carious lesion, biomodification with EDC did not affect the dentin wettability, whereas CHI changed the wettability of remaining dentin. Both biomodifiers promoted a slight change on dentin morphology.  相似文献   

15.
Erosion resistance of four types of cast iron of different microstructures and graphite morphologies (viz., grey cast iron, compacted graphite iron, spheroidal graphite iron and austempered ductile iron) was evaluated in three different erosive media. Results indicate that austempered ductile iron has the highest erosion resistance in all three media, followed by spheroidal graphite iron, compacted graphite iron and grey cast iron, in that order. Graphite morphology has a significant effect on the erosion resistance of these irons in quartz-water and iron oxide-oil slurry. However, the matrix microstructure determines the erosion resistance of these irons in quartz-oil slurry. The parameter H/E (which is the ratio of the Brinell hardness number to Young's modulus of the material) has been found to be a good indicator of erosive wear in quartz-oil slurry.  相似文献   

16.
Background: It remains uncertain as to whether or not CO2 laser is able to hinder demineralization of enamel. The possibility to use bovine instead of human teeth on anticariogenic studies with laser has not yet been determined. Purpose: To compare the ability of CO2 laser and fluoride to inhibit caries‐like lesions in human enamel and to test whether a similar pattern of response would hold for bovine enamel. Study Design: Ninety‐six enamel slabs (2 × 2 × 4 mm) (48 from bovine and 48 from human teeth) were randomly distributed according to surface treatment (n = 12): CO2 laser, 5% sodium fluoride varnish (FV), 1.23% acidulated phosphate fluoride (APF) gel, or no treatment (control). Specimens were subjected to a 14‐day in vitro cariogenic challenge. Microhardness (SMH) was measured at 30 μm from the surface. For ultrastructural analysis, additional 20 slabs of each substrate (n = 5) received the same treatment described earlier and were analyzed by SEM. Results: ANOVA and Tukey test ascertained that CO2 laser promoted the least mineral loss (SMH = 252a). Treatment with FV resulted in the second highest values (207b), which was followed by APF (172c). Untreated specimens performed the worst (154d). SEM showed no qualitative difference between human and bovine teeth. APF and control groups exhibited surfaces covered by the smear layer. A granulate precipitate were verified on FV group and fusion of enamel crystals were observed on lased‐specimens. Conclusions: CO2 laser may control caries progression more efficiently than fluoride sources and bovine teeth may be a suitable substitute for human teeth in studies of this nature. Microsc. Res. Tech. 73:1030–1035, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
《Wear》2007,262(7-8):807-818
The present investigation reports about, the solid particle erosion behaviour of randomly oriented short E-glass, carbon fibre and solid lubricants (PTFE, graphite, MoS2) filled polyetherimide (PEI) composites. The erosion rates (ERs) of these composites have been evaluated at different impingement angles (15–90°) and impact velocities (30–88 m/s). Mechanical properties such as tensile strength (S), ultimate elongation to fracture (e), hardness (HV), Izod impact strength (I) and shear strength (Ss) seems to be controlling the erosion rate of PEI and its composites. Polyetherimide and its glass, carbon fibre reinforced composites showed semi-ductile erosion behaviour with peak erosion rate at 60° impingement angle. However, glass fibre reinforced PEI composite filled with solid lubricants showed peak erosion rate at 60° impingement angle for impact velocities of 30 and 88 m/s, whereas for intermediate velocities (52 and 60 m/s) peak erosion rate observed at 30° impingement angle. It is observed that 20% (w/w) glass fibre reinforcement helps in improving erosive wear resistance of neat PEI matrix. Erosion efficiency (η) values (0.23–8.2%) indicate micro-ploughing and micro-cutting dominant wear mechanisms. The morphology of eroded surfaces was examined by using scanning electron microscopy (SEM). Possible erosion mechanisms are discussed.  相似文献   

18.
Zheng X  Pan H  Wang Z  Chen H 《Journal of microscopy》2011,241(2):162-170
Objective: This study was carried out to observe the enzymatic degradation of human dentin collagen fibrils exposed to exogenous collagenase in situ using atomic force microscopy, to understand the characteristics of the enzymatic degradation of collagen fibrils on dentin specimens. Methods: Polished dentin specimens from caries‐free third molars were etched with citric acid, and then treated with an aqueous solution of 6.5% NaOCl for 120 s. The specimen was then put into a fluid cell and treated with a mixed solution of collagenase I (MMP‐1) and collagenase II (MMP‐8) for 9 h. AFM with contact mode was performed in situ to monitor the enzymatic degradation process of the dentin collagen fibrils. The distinctly topographic changes of the dentin surface were recorded continuously during different stages of the enzymatic degradation process. Results: The mixed solution of exogenous collagenase I and collagenase II could degrade dentin organic matrix (mainly collagen) efficiently, and the structures of dentin substrate were clearly exposed. Conclusion: It is possible to carry out real‐time observations on the enzymatic biodegradation process of human dentin collagen fibrils on dentin specimens with atomic force microscopy in situ. By this means, the fine structures of the etched dentin substrate were clearly revealed, possibly contributing to the related study of human dentin in vitro.  相似文献   

19.
This study evaluated the influence of finishing and polishing procedures and different fluoride solutions on superficial morphology and chemistry of the nanofilled composite resin Supreme XT (3M) through the EDX analysis and SEM evaluation. Circular specimens (n = 30) of 10 mm diameter and 2 mm thickness were prepared, with half of the sample assays finished and polished with Super‐Snap® sandpaper. The experimental groups were divided according to the presence or absence of finishing and polishing and solutions (artificial saliva, 0.05% of manipulated sodium fluoride solution, Fluordent Reach, Oral B, Fluorgard). Specimens were immersed in each respective solution for 1 min per day, during 60 days and stored in artificial saliva at 37 ± 1°C between immersion periods. Topography and chemical analysis was qualitative. It was observed that specimens submitted to finishing and polishing procedures had lower superficial degradation. Fluoride solutions promoted superficial alterations on specimens, being the highest degradation obtained with Fluordent Reach. It can be concluded that finishing and polishing procedures and the immersion media influence the superficial morphology of composite resin tested; the Fluordent Reach was the fluoride solution that most affected the material's surface. Microsc. Res. Tech. 2011., © 2011 Wiley Periodicals, Inc.  相似文献   

20.
The purpose of this study was to evaluate the surface roughness (Ra), and the morphology and composition of filler particles of different composites submitted to toothbrushing and water storage. Disc‐shaped specimens (15 mm × 2 mm) were made from five composites: two conventional (Z100?, and Filtek? Supreme Ultra Universal, 3M), one “quick‐cure” (Estelite ∑ Quick, Tokuyama), one fluoride‐releasing (Beautiful II, Shofu), and one self‐adhering (Vertise Flow, Kerr) composite. Samples were finished/polished using aluminum oxide discs (Sof‐Lex, 3M), and their surfaces were analyzed by profilometry (n = 5) and scanning electron microscopy (SEM; n = 3) at 1 week and after 30,000 toothbrushing cycles and 6‐month water storage. Ra data were analyzed by two‐way analysis of variance and Tukey's test (α = 0.05). Filler particles morphology and composition were analyzed by SEM and X‐ray dispersive energy spectroscopy, respectively. Finishing/polishing resulted in similar Ra for all the composites, while toothbrushing and water storage increased the Ra of all the tested materials, also changing their surface morphology. Beautifil II and Vertise Flow presented the highest Ra after toothbrushing and water storage. Filler particles were mainly composed of silicon, zirconium, aluminum, barium, and ytterbium. Size and morphology of fillers, and composition of the tested composites influenced their Ra when samples were submitted to toothbrushing and water storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号