首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The molecular–electronic structure of the metal phthalocyanines (Fe, Co, Ni and Cu) has been determined by the molecular orbital treatment. Coulomb integrals of the metal atom occurring in the secular determinants have been approximated equivalent to the valence state ionization energy (VSIE) of a metal orbital for a particular charge configuration. The calculated π-electron charge densities have been found to be higher on the nitrogen atoms as compared to the other atoms in the molecule. This is in agreement with the e.s.r. studies of the metal phthalocyanines. To test the correctness of the molecular orbital calculations, the π-π* transitions (14,000 cm?1 ? 30000 cm?1), d-d* transitions (20000 cm?1 ? 60000 cm?1) and charge transfer transitions (15000 cm ?1 ? 30000 cm?1) have been calculated in the metal phthalocyanine molecules. The calculated frequencies have been compared with the observed ones and found in fair agreement.  相似文献   

2.
High-valent iron(iv)-oxo species are key intermediates in the catalytic cycles of a range of O2-activating iron enzymes. This work presents a detailed study of the electronic structures of mononuclear ([FeIV(O)(L)(NCMe)]2+, 1, L = tris(3,5-dimethyl-4-methoxylpyridyl-2-methyl)amine) and dinuclear ([(L)FeIV(O)(μ-O)FeIV(OH)(L)]3+, 2) iron(iv) complexes using absorption (ABS), magnetic circular dichroism (MCD) spectroscopy and wave-function-based quantum chemical calculations. For complex 1, the experimental MCD spectra at 2–10 K are dominated by a broad positive band between 12 000 and 18 000 cm–1. As the temperature increases up to ∼20 K, this feature is gradually replaced by a derivative-shaped signal. The computed MCD spectra are in excellent agreement with experiment, which reproduce not only the excitation energies and the MCD signs of key transitions but also their temperature-dependent intensity variations. To further corroborate the assignments suggested by the calculations, the individual MCD sign for each transition is independently determined from the corresponding electron donating and accepting orbitals. Thus, unambiguous assignments can be made for the observed transitions in 1. The ABS/MCD data of complex 2 exhibit ten features that are assigned as ligand-field transitions or oxo- or hydroxo-to-metal charge transfer bands, based on MCD/ABS intensity ratios, calculated excitation energies, polarizations, and MCD signs. In comparison with complex 1, the electronic structure of the FeIV O site is not significantly perturbed by the binding to another iron(iv) center. This may explain the experimental finding that complexes 1 and 2 have similar reactivities toward C–H bond activation and O-atom transfer.  相似文献   

3.
A mononuclear copper(II) complex was synthesized and in the crystal there are three types of π?π stacking interactions among adjacent complexes. The fitting for the data of the variable-temperature magnetic susceptibilities reveals that there is a weak anti-ferromagnetic coupling among adjacent Cu(II) ions with Weiss constant θ?=??2.99 K?=??2.08?cm?1. Theoretical calculations reveal that two types of π?π stacking resulted in anti-ferromagnetic couplings with 2J?=??12.40?cm?1 and 2J?=??9.74?cm?1, respectively, and the third type of π?π stacking led to a weak ferromagnetic interaction with 2J?=?4.28?cm?1. The theoretical calculations also indicate that the ferromagnetic coupling sign from the π?π stacking accords with McConnell I spin-polarization mechanism, whereas the anti-ferromagnetic coupling signs cannot be explained with McConnell I spin-polarization mechanism.  相似文献   

4.
The central C atom of the OCCCO skeleton of the malonaldehyde molecule is replaced by N, and the effects upon the intramolecular H-bond and the proton transfer are monitored by ab initio calculations in the ground and excited electronic states. The H-bond is weakened in the singlet and triplet states arising from n→π* excitation in both molecules, which is accompanied by a heightened barrier to proton transfer.3ππ* behaves in the same manner, but the singlet ππ* state has a stronger H-bond and lower barrier. Replacement of the central C atom by N strengthens the intramolecular H-bond. Although the proton transfer barrier in the ground state of formimidol is lower than in malonaldehyde, the barriers in all four excited states are higher in the N-analog. The latter substitution also dampens the effect of the n→π* excitation upon the H-bond and increases the excitation energies of the various states, particularly ππ*. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 129–138, 1998  相似文献   

5.
Two α-diimine ligands were prepared in 60–70% yield via p-toluenesulfonic acid-catalyzed condensation reactions from benzil with 4-bromoaniline and with p-anisidine. Palladium(II) complexes were prepared from both ligands in 70–80% yield. X-ray structures were obtained for the ligand prepared from p-anisidine and its palladium(II) complex. A notable feature observed in the former was its unconjugated C–N double bonds, both in the (E)-configuration. The latter structure possessed two molecules of the metal complex in its unit cell, both of which have diimine cores with a degree of conjugation and a nonideal square-planar geometry around palladium caused by the small bite angles (79.61(3) and 79.15(3)°) of the diimine ligands. Solution-phase electronic absorption spectra of the ligands in chloroform have two bands from ππ ? and nπ ? transitions at 269–345?nm. Absorption spectra of the complexes in chloroform exhibited bands attributed to ligand-centered transitions that were red-shifted as compared to free ligands. Only the spectrum obtained from a chloroform solution of the palladium(II) complex with the diimine ligand prepared from p-anisidine featured a band at approximately 520?nm, which was assigned to a combination of d π(Pd)→π ? and n(Cl)→π ? transitions.  相似文献   

6.
The polarization of both nπ* absorption bands of glyoxal has been measured in a glass matrix of 2-methyltetrahydrofuran by the photoselection method. The second absorption band in the 30 000 cm?1 region has been assigned to a 1Ag1Bg nπ* transition. Its intensity is mainly induced by interaction with the solvent. An absorption band at about 43 000 cm?1 has been ascribed to a charge transfer transition in complexes of glyoxal and 2-MTHF.  相似文献   

7.
An FT-IR study of pyrrole self-association in CCl4 solutions was carried out. According to the IR measurements, pyrrole forms self-associated dimeric species via N-H?π hydrogen bonding. This was also confirmed by quantum chemical calculations for pyrrole monomer and dimer at B3LYP/6-31++G(d,p) level of theory. A T-shaped minimum was located on B3LYP/6-31++G(d,p) PES of pyrrole dimer characterized with a hydrogen bond of an N-H?π type, with centers-of-mass separation of monomeric units of 4.520 Å, H?π distance of 2.475 Å, the interplanar angle between the two monomeric units being 72.9°. The anharmonic vibrational frequency shift upon dimer formation calculated on the basis of 1D DFT vibrational potentials is in excellent agreement with the experimental data (84 vs. 87 cm−1). Harmonic vibrational analysis predicts somewhat smaller shift (68 cm−1). On the basis of NIR spectroscopic data, anharmonicity constants for the 2ν(N-H) and 2ν(N-H?π) vibrational transitions were calculated. The orientational dynamics of monomeric and self-associated pyrrole species was studied within the framework of the transition dipole moment time correlation function formalism. The period of essentially free rotation in the condensed phase reduces from 0.05 ps for the monomeric pyrrole to 0.02 ps for the proton-donor molecule within the dimer.  相似文献   

8.
Oxophthalocyaninato(2–)molybdenum(IV), activated by bromine oxidation prior to use, reacts with fused triphenylphosphine in the presence of bis(triphenylphosphine)iminium bromide to yield linear-bis(triphenylphosphine)iminium trans-dibromophthalocyaninato(2–)molybdate(III), l(PNP)trans[Mo(Br)2pc2?]. It crystallizes triclinic with crystal data: a = 10.506(1) Å, b = 12.436(2) Å, c = 12.918(2) Å, α = 76.186(1)°, β = 67.890(1)°, γ = 68.689(1)°; space group P1 (No. 2); Z = 1. MoIII is in a pseudo-octahedral coordination geometry with the bromo ligands in trans-arrangement. The Mo? Np and Mo? Br distance is 2.043(10) and 2.588(1) Å, respectively. The PNP cation adopts a linear conformation. In the IR spectrum vas(Mo? Br) is observed at 218 cm?1 and vas(P? N) of the linear (P? N? P) core at 1406 cm?1. Cyclic and differential-pulse voltammetry show two quasi-reversible cathodic processes at ?1.15 and ?0.53 V vs. Ag/AgCl. The first is assigned to a phthalocyaninate directed reduction (pc2?/pc3?), while the latter arises from a Mo directed reduction (MoIII/MoII). Spectral monitoring confirms the reversible MoIII/MoII reduction. Two quasi-reversible anodic processes at 0.60 and 1.27 V are assigned to the successive Mo directed oxidation with redox couples MoIII/MoIV and MoIV/MoV. For the first time, three very intense spin-allowed trip-quartet transitions are observed in the electronic absorption spectra at 7140 (TQI), 16890 (TQ2) and 18700 cm?1 (TQ3) together with a sing-quartet transition at 15850 cm?1 and characteristic ?Q”? region with maximum at 28500 cm?1 and ?N”? region at 37400 cm?1. All electronic excitations are of comparable intensity. A prominent low temperature emission at 6690 cm?1 is assigned to a spin-forbidden trip-sextet.  相似文献   

9.
In this work, the FT-IR and FT-Raman spectra of 1-naphthaleneacetic acid methyl ester (abbreviated as 1-NAAME, C10H7CH2CO2CH3) have been recorded in the region 3600–10 cm−1. The optimum molecular geometry, normal mode wavenumbers, infrared and Raman intensities, Raman scattering activities, corresponding vibrational assignments, Mullikan atomic charges and other thermo-dynamical parameters were investigated with the help of HF and B3LYP (DFT) method using 6-31G(d,p), 6-311G(d,p) basis sets. Reliable vibrational assignments were made on the basis of total energy distribution (TED) calculated with scaled quantum mechanical (SQM) method. From the calculations, the molecules are predicted to exist predominantly as the C1 conformer. The correlation equations between heat capacity, entropy, enthalpy changes and temperatures were fitted by quadratic formulae. Lower value in the HOMO and LUMO energy gap explains the eventual charge transfer interactions taking place within the molecule. UV–VIS spectral analyses of 1NAAME have been researched by theoretical calculations. In order to understand electronic transitions of the compound, TD-DFT calculations on electronic absorption spectra in gas phase and solvent (DMSO and chloroform) were performed. The calculated frontier orbital energies, absorption wavelengths (λ), oscillator strengths (f) and excitation energies (E) for gas phase and solvent (DMSO and chloroform) are also illustrated.  相似文献   

10.
Density functional calculations for the [(RS)xFe(NO)4−x] (R=CH3) compounds are carried out using the DFT method with the B3LYP functional. The results can be verified by the experimental data only in the case of the [(RS)2Fe(NO)2] complex. The experimentally characterised molecular structure of [(RS)2Fe(NO)2] (where (RS)2=(SCH2CH2NMeCH2CH2CH2NMeCH2CH2S) is properly reproduced by the RB3LYP method. The discrepancy between the calculated spin densities with the integral spin observed experimentally is interpreted in terms of antiferromagnetic coupling between the Fe(III) centre and the NO ligands. The theoretical analysis gives a good account of some properties observed in these compounds. In particular, the electronic spectrum calculated by the TDDFT method for [(CH3S)2Fe(NO)2] is similar in shape to the experimental one, although is hypsochromically shifted. The LLCT (Sπ→π*NO), LMCT (Sπ→d) or (π*NO→d+Sπ→d) and MLCT (d→π*NO) transitions are mostly responsible for absorption of the [(RS)xFe(NO)4−x] complexes within UV-Vis. The chemical reactivity of [(RS)2Fe(NO)2] is interpreted basing on the calculated effect of a polar solvent on the ligand polarity and on the character of the HOMO and LUMO orbitals.  相似文献   

11.
The electronic absorption spectra of 2-, 3-, and 4-vinylpyridines and 1,2-(2,3-dipyridyl), 1,2-(2,4-dipyridyl), 1,2-(3,4-dipyridyl), and 1,2-(4,4-dipyridyl) ethylenes have been investigated in polar and nonpolar solvents. A correlation has been made between the geometry of the molecule and the observed spectrum. Molecular orbital calculations have been carried out using the INDO/S? CI procedure and a limited geometry optimization. The solvent effect at the MO level has been calculated. MO calculations predicted the existence of nπ* transitions that were not observed experimentally. The wave functions of the different CI states were calculated. The experimental transition energy as well as oscillator strength corresponded satisfactorily with the calculated ones. The observed transitions were assigned according to the results of MO calculations.  相似文献   

12.
Electronic and vibrational spectra of mimetite, arsenian pyromorphite and hedyphane minerals have been analysed and the spectra related to the mimetite and arsenian pyromorphite and hedyphane mineral structure. The chief spectral feature in the electronic spectra at ∼10 000 cm−1 (1.00 μm) with variable band position and intensity results from the ferrous ion. The splitting of Fe(II) band is large in mimetites with a separation of 1415 cm−1. An additional band shown by arsenian pyromorphite at 10 735 cm−1 (0.93 μm) is assigned to Cu(II) dd-transition. The substitution of Fe(II) causes a blue shift for Cu(II) band in mimetites and the intensity of this band is enhanced at ∼11 140 cm−1 (0.90 μm). The change in colour from brown to orange-yellow relates to the amount of Cu and/or Fe impurities in the mimetite minerals.  相似文献   

13.
The infrared (3500-80 cm−1) and Raman (3500-20 cm−1) spectra of 3-fluoro-1-butyne, CH3CHFCCH, have been recorded for the gas and solid. Additionally, the Raman spectrum of the liquid has also been recorded to aid in the vibrational assignment. Ab initio electronic structure calculations of energies, geometrical structures, vibrational frequencies, infrared intensities, Raman activities and the potential energy function for the methyl torsion have been calculated to assist in the interpretation of the spectra. The fundamental torsional mode is observed at 251 cm−1 with a series of sequence peaks falling to lower frequency. The three-fold methyl torsional barrier is calculated to be 1441 ± 20 cm−1 (4.12 ± 0.06 kcal mol−1) where the uncertainty is partly due to the uncertainty in values of the V6 term. A complete vibrational assignment is proposed based on band contours, relative intensities, and ab initio predicted frequencies. Several fundamentals are significantly shifted in the condensed phases compared to values in the vapor state.  相似文献   

14.
The geometries, electronic structures, polarizabilities, and hyperpolarizabilities of organic dye sensitizer 3,4-pyridinedicarbonitrile was studied based on Hartree–Fock (HF) and density functional theory (DFT) using the hybrid functional B3LYP. Ultraviolet–visible (UV–Vis) spectrum was investigated by time dependent DFT (TD-DFT). Features of the electronic absorption spectrum in the visible and near-UV regions were assigned based on TD-DFT calculations. The absorption bands are assigned to π  π1 transitions. Calculated results suggest that the three lowest energy excited states are due to photoinduced electron transfer processes. The interfacial electron transfer between semiconductor TiO2 electrode and 3,4-pyridinedicarbonitrile is due to electron injection process from excited dye to the semiconductor’s conduction band. The role of cyanine in 3,4-pyridinedicarbonitrile in geometries, electronic structures, and spectral properties were analyzed.  相似文献   

15.
Summary Studies of the electronic structure and spectrum of dibenzo [g,p]chrysene, carried out in 1965 and 1985, were not fully conclusive. They are repeated here by means of improved linear dichroism spectroscopy, quantum mechanical calculations of the spectra, and structural studies. Based on the new evidence, especially the observed transition moment directions, it is concluded that the molecule is nonplanar with D2 symmetry. The experimentally determined transition moment directions also allow a complete assignment of all significant transitions in the region 25 000 to 45 000 cm–1. All three possible (perpendicular) transition moment directions are represented among the observed electronic transitions.Dedicated to Jan Linderberg on the occasion of his 60th birthday  相似文献   

16.
Two Cu(I) complexes based on the thioethyl‐bridged triazol‐pyridine ligand with tetrathiafulvalene unit (TTF‐TzPy, L ), [Cu(I)(Binap)(L)]BF4 ( 5 , Binap=2,2’‐bis(diphenylphosphino)‐1,1’‐binaphthyl) and [Cu(I)(Xantphos)(L)]BF4 ( 6 , Xantphos=9,9‐dimethyl‐4,5‐bis(diphenylphosphino)‐xanthene), have been synthesized. All new compounds are characterized by elemental analyses, 1H NMR and mass spectroscopies. The complex 5 has been determined by X‐ray structure analyses which shows that the central copper (I) ion assumes distorted tetrahedral geometry. The photophysical, computational and electrochemical properties of L and 5 ‐ 6 have been investigated. The most representative molecular orbital energy‐level diagrams and the spin‐allowed singlet? singlet electronic transitions of the three compounds have been calculated with density functional theory (DFT) and time‐dependent DFT (TD‐DFT). The luminescence bands of Cu(I) complexes 5 ‐ 6 have been assigned as mixed intraligand and metal‐to‐ligand charge transfer 3(MLCT+π→π*) transitions through analysis of the photophysical properties and DFT calculations. The electrochemical studies reveal that 5 ‐ 6 undergo reversible TTF/TTF+?/TTF2+ redox processes and one irreversible Cu+→Cu2+ oxidation process.  相似文献   

17.
The new five-coordination zinc(II) complex of formula [Zn(Im)(l-tyr)2]2·5H2O consisting of l-tyrosine (l-tyr) and imidazole (Im) molecules as ligands was prepared as crystals and characterized by X-ray diffraction, IR-FIR vibrational and UV-Vis electronic spectroscopy. The [Zn(Im)(l-tyr)2]2·5H2O complex crystallizes in the orthorhombic crystal system and P21212 space group. The [ZnN2N′O2] chromophore has distorted bipiramidal geometry with value of τ parameter 0.7. The sensitive intra and inter-molecular hydrogen bonds created the layers arrangement and the “pseudo-baskets” fashion. The intraligand charge transfer (ILCT) π-π and π-π transitions in the ligands molecule are corresponded to the intensity bands in the UV-Vis region.  相似文献   

18.
The crystal and molecular structure of a polymeric Cu(II)-orotate complex, [Cu(μ-HOr)(H2O)2]n, has been reinvestigated by single crystal X-ray diffraction. It is shown that several synergistic interactions: two axial Cu-O interactions; intramolecular and intermolecular hydrogen bonds; and π-π stacking between the uracil rings contribute to the stability of the crystal structure. The Raman and FT-IR spectra of the title complex are reported for the first time. Comprehensive theoretical studies have been performed by using three unrestricted DFT methods: B3LYP; and the recently developed M06, and M05-2X density functionals. Clear-cut assignments of all the bands in the vibrational spectra have been made on the basis of the calculated potential energy distribution, PED. The very strong Raman band at 1219 cm−1 is diagnostic for the N1-deprotonation of the uracil ring and formation of the copper-nitrogen bond, in this complex. The Cu-O (carboxylate) stretching vibration is observed at 287 cm−1 in the IR spectrum, while the Cu-N (U ring) stretching vibration is assigned to the strong Raman band at 263 cm−1. The molecular structure and vibrational spectra (frequencies and intensities) calculated by the M06 functional method are very similar to the results obtained by the B3LYP method, but M06 performs better than B3LYP in calculations of the geometrical parameters and vibrational frequencies of the interligand O-H?O hydrogen bonding. Unfortunately, the M05-2X method seriously overestimates the strength of interligand hydrogen bond.  相似文献   

19.
Aspects of the molecular structure of the mineral dorfmanite Na2(PO3OH)·2H2O were determined by Raman spectroscopy. The mineral originated from the Kedykverpakhk Mt., Lovozero, Kola Peninsula, Russia. Raman bands are assigned to the hydrogen phosphate units. The intense Raman band at 949 cm−1 and the less intense band at 866 cm−1 are assigned to the PO3 and POH stretching vibrations. Bands at 991, 1066 and 1141 cm−1 are assigned to the ν3 antisymmetric stretching modes. Raman bands at 393, 413 and 448 cm−1 and 514, 541 and 570 cm−1 are attributed to the ν2 and ν4 bending modes of the HPO4 units, respectively. Raman bands at 3373, 3443 and 3492 cm−1 are assigned to water stretching vibrations. POH stretching vibrations are identified by bands at 2904, 3080 and 3134 cm−1. Raman spectroscopy has proven very useful for the study of the structure of the mineral dorfmanite.  相似文献   

20.
A basic N,N‐dimethylaminoazobenzene–fullerene (C60) dyad molecular skeleton is modelled and synthesized. In spite of the myriad use of azobenzene as a photo‐ and electrochromic moiety, the idea presented herein is to adopt a conceptually different path by using it as a bridge in a donor–bridge–acceptor single‐molecular skeleton, connecting the electron acceptor N‐methylfulleropyrrolidine with an electron donor N,N‐dimethylaniline. Addition of trifluoroacetic acid (TFA) results in a drastic colour change of the dyad from yellow to pink in dichloromethane (DCM). The structure of the protonated species are established from electronic spectroscopy and time‐dependent density functional theory (TD‐DFT) calculations. UV/Vis spectroscopic investigations reveal the disappearance of the 409 nm 1(π→π*) transition with appearance of new features at 520 and 540 nm, attributed to protonated β and α nitrogens, respectively, along with a finite weight of the C60 pyrrolidinic nitrogen. Calculations reveal intermixing of n(N?N)→π*(N?N) and charge transfer (CT) transitions in the neutral dyad, whereas, the n(N?N)→π*(N?N) transition in the protonated dyad is buried under the dominant 1(π →π*) feature and is red‐shifted upon Gaussian deconvolution. The experimental binding constants involved in the protonation of N,N‐dimethylanilineazobenzene and the dyad imply an almost equal probability of existence of both α‐ and β‐protonated forms. Larger binding constants for the protonated dyads imply more stable dyad complexes than for the donor counterparts. One of the most significant findings upon protonation resulted in frontier molecular orbital (FMO) switching with the dyad LUMO located on the donor part, evidenced from electrochemical investigations. The appearance of a new peak, prior to the first reduction potential of N‐methylfulleropyrrolidine, clearly indicates location of the first incoming electron on the donor‐centred LUMO of the dyad, corroborated by unrestricted DFT calculations performed on the monoanions of the protonated dyad. The protonation of the basic azo nitrogens thus enables a rational control over the energetics and location of the FMOs, indispensable for electron transport across molecular junctions in realizing futuristic current switching devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号