首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single crystals of MoS2 and MoSe2 were grown by chemical vapour transport method using iodine as a transporting agent and characterized by optical microscopy, energy dispersive analysis (EDAX), X-ray powder diffraction (XRD) and Hall mobility at room temperature. The variation of electrical resistance under pressure was monitored in a Bridgman anvil set-up up to 6.5 GPa to identify occurrence of any structural transition. MoS2 and MoSe2 do not undergo any structural transitions under pressure.  相似文献   

2.
Making contact of transition metal dichalcogenides (TMDCs) with a metal surface is essential for fabricating and designing electronic devices and catalytic systems. It also generates strain in the TMDCs that plays significant role in both electronic and phonon structures. Therefore, detailed understanding of mechanism of the strain generation is important to fully comprehend the modulation effect for the electronic and phonon properties. Here, MoS2 and MoSe2 monolayers are grown on Au surface by chemical vapor deposition and it is demonstrated that the contact with a crystalline Au(111) surface gives rise to only out‐of‐plane strain in both MoS2 and MoSe2 layers, whereas no strain generation is observed on polycrystalline Au or SiO2/Si surfaces. Scanning tunneling microscopy analysis provides information regarding consequent specific adsorption sites between lower S (Se) atoms in the S? Mo? S (Se? Mo? Se) structure and Au atoms via unique moiré superstructure formation for MoS2 and MoSe2 layers on Au(111). This observation indicates that the specific adsorption sites give rise to out‐of‐plane strain in the TMDC layers. Furthermore, it also leads to effective modulation of the electronic structure of the MoS2 or MoSe2 layer.  相似文献   

3.
Constructing 2D heterostructure materials by stacking different 2D materials can combine the merits of the individual building blocks while eliminating their shortcomings. Dichalcogenides are attractive anodes for potassium-ion batteries (KIBs) due to their high theoretical capacity. However, the practical application of dichalcogenide is greatly hampered by the poor electrochemical performance due to sluggish kinetics of K+ insertion and the electrode structure collapse resulting from the large K+ insertion. Herein, heterostructures of 2D molybdenum dichalcogenide on 2D nitrogen-doped carbon (MoS2, MoSe2-on-NC) are prepared to boost their potassium storage performance. The unique 2D heterostructures possess built-in heterointerfaces, facilitating K+ diffusion. The robust chemical bonds (C S, C Se, C Mo bonds) enhance the mechanical strength of electrodes, thus suppressing the volume expansion. The 2D N-doped carbon nanosheets interconnected as a 3D structure offer a fast diffusion path for electrons. Benefitting from these merits, both the MoS2-on-NC and the MoSe2-on-NC exhibit unprecedented cycle life. Moreover, the electrochemical reaction mechanism of MoSe2 is revealed during the process of potassiation and depotassiation.  相似文献   

4.
A nano-MoS2/TiO2 composite was synthesized in H2 atmosphere by calcining a MoS3/TiO2 precursor, which was obtained via a quick deposition of MoS3 on anatase nano-TiO2 under a strong acidic condition. The obtained nano-MoS2/TiO2 composite was characterized by X-ray diffraction spectroscopy, Brunauer–Emmett–Teller (BET) surface area, scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive spectrometry, ultraviolet–visible spectroscopy, and Fourier transform infrared spectroscopy. The results show that the composite had a high BET surface area because of its small size and irregularly layered structure. MoS2 in the composite was composed of typical layered structures with thicknesses of 2–8 nm and lengths of 10–40 nm. The composite contained a wide and intensive absorption at 400–700 nm, which is in the visible light region, and presented a positive catalytic effect on removing methyl orange from the aqueous solution. The catalytic activity of the composite was influenced by the initial concentration of methyl orange, the amount of the catalyst, the pH value, and the degradation temperature. In addition, the composite catalyst could be regenerated and repeatedly used via filtration three times. The deactivating catalyst could be reactivated after catalytic reaction by heating at 450 °C for 30 min in H2.  相似文献   

5.
The (Pd, Fe)-modified SnO2 (S1) and Pt-loaded SnO2 (S2) are synthesized via a sol–gel method. As S1 has better selectivity to CO against H2 while S2 to H2 against CO at 400 °C. Thus S1 and S2 can be used to detect the concentration of CO and H2, respectively. However, neither S1 nor S2 can detect the concentration of CO and H2 when they coexist. In this paper, S1 and S2 sensors are used simultaneously for mixed gas of CO and H2 detection, and the respective concentration of CO and H2 is calculated. The calculation process is explained as follows: the response of S1 (R1) and S2 (R2) to a fixed concentration of mixed gas of CO and H2 is obtained in experiment, respectively. So we can calculate the concentration of CO and H2 by using simultaneous equations with the independent variable R1 and R2. Contrast real values with calculated values of CO and H2 concentration, the error margin are all less than 5%, which indicates that this method may be a promising candidate for enhancing the selectivity of semiconductor-based gas sensor to two or more gases.  相似文献   

6.
In pursuing excellent supercapacitor electrodes, we designed a series of MoS2/CoS2 composites consisting of flower-liked MoS2 and octahedron-shaped CoS2 through a facile one-step hydrothermal method and investigated the electrochemical performance of the samples with various hydrothermal time. Due to the coupling of two metal species and a big amount of well-developed CoS2 and MoS2, the results indicated that the MoS2/CoS2 composites electrodes exhibited the best electrochemical performance with a large specific capacitance of 490 F/g at 2 mV/s or 400 F/g at 10 A/g among all samples as the hydrothermal time reached 48 h (MCS48). Furthermore, the retention of MCS48 is 93.1% after 10000 cycles at 10 A/g, which manifests the excellent cycling stability. The outstanding electrochemical performance of MCS48 indicates that it could be a very promising and novel energy storage material for supercapacitors in the future.  相似文献   

7.
Tuning the properties of van der Waals heterostructures based on alternating layers of two-dimensional materials is an emerging field of research with implications for electronics and photonics. Hexagonal boron nitride (h-BN) is an attractive insulating substrate for two-dimensional materials as it may exert less influence on the layer’s properties than silica. In this work, MoS2 layers were deposited by chemical vapor deposition (CVD) on thick h-BN flakes mechanically exfoliated deposited on Si/SiO2 substrates. CVD affords the controllable, large-scale preparation of MoS2 on h-BN alleviating shortcomings of manual mechanical assembly of such heterostructures. Electron microscopy revealed that in-plane and vertical to the substrate MoS2 layers were grown at high yield, depending on the sample preparation conditions. Raman and photoluminescence spectroscopy were employed to assess the optical and electronic quality of MoS2 grown on h-BN as well as the interactions between MoS2 and the supporting substrate. Compared to silica, MoS2 layers grown on h-BN are less prone to oxidation and are subjected to considerably weaker electronic perturbation.  相似文献   

8.
The kinetics of the reaction of Np(V) with Fe(II) in dilute perchloric and nitric acid solutions containing H2C2O4 was studied by spectrophotometry. In the range pH 1–2, the reaction rate is described by the equation d[Np(V)]/dt = k[Np(V)][Fe(II)][H2C2O4]2[H+]−1.6, k = 182 mol−1.4 l1.4 s−1. The activation energy in the range 25–45°C is 26 kJ mol−1. The reaction mechanism involves formation of Fe(II) and Np(V) oxalate complexes, followed by their reaction with the participation of the H+ ion.  相似文献   

9.
Nanocrystalline La1−x Co x Mn1−y Ni y O3 (x = 0.2 and 0.4; y = 0.1, 0.3, and 0.5) thick films sensors prepared by sol–gel method were studied for their H2S gas sensitivity. The structural and morphological properties have been carried out by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Average particle size estimated from XRD and TEM analyses was observed to be 30–35 nm. The gas response characteristics were found to depend on the dopants concentration and operating temperature. The maximum H2S gas response of pure LaMnO3 was found to be at 300 °C. In order to improve the gas response, material doped with transition metals Co and Ni on A- and B-site, respectively. The La0.6Co0.4Mn0.5Ni0.5O3 shows high response towards H2S gas at an operating temperature 250 °C. The Pd-doped La0.6Co0.4Mn0.5Ni0.5O3 sensor was found to be highly sensitive to H2S at an operating temperature 200 °C. The gas response, selectivity, response time and recovery time were studied and discussed.  相似文献   

10.
Single-crystalline Ag2Se complex nanostructures have been synthesized via a solvothermal route in which selenophene (C4H4Se) as a selenylation source reacts with AgNO3 at a temperature of 240 °C. An orthorhombic phase β-Ag2Se nanostructure was identified by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectroscopy. The wettability of the as-synthesized β-Ag2Se nanostructure was studied by measurement of the water contact angle (CA). Static water CA values of over 150° were obtained, which can be attributed to the β-Ag2Se complex nanostructure having a combination of micro- and nanostructures. The superhydrophobic Ag2Se nanostructure may find applications in self-cleaning. Additionally, the photocatalytic activity of the as-synthesized β-Ag2Se nanostructure was evaluated by photodegradation of rhodamine B (RhB) dye under ultraviolet (UV) light irradiation.  相似文献   

11.
The tribological properties of carbon fiber reinforced polyimide (PI) composites with different MoS2 containing sliding against GCr15 steel were comparatively evaluated on an M-2000 model ring-on-block test rig. The wear mechanisms were also comparatively discussed, based on scanning electron microscopic examination of the worn surface of the PI composites and the transfer film formed on the counterpart. It was found that small incorporation of MoS2 was harmful to the improvement of friction and wear behaviors of carbon fiber reinforced PI composites. However, it was found that the increasing filler of MoS2 significantly improved the wear resistance and decreased the friction coefficient of carbon fiber reinforced PI composites. It was also found that the tribological properties of MoS2 and short carbon fiber reinforced PI composites were closely related with the sliding condition such as sliding rate and applied load.  相似文献   

12.
MoS2 has attracted a lot of interest in the field of lithium-ion storage as an anode material owing to its high capacity and two-dimensional (2D)-layer structure. However, its electrochemical properties, such as rate capability and cycling stability, are usually limited by its low conductivity, volume variation, and polysulfide dissolution during lithiation/delithiation cycling. Here, a designed two-layer carbon-coated MoS2/carbon nanofiber (MoS2/C/C fiber) hybrid electrode with a double-layer carbon coating was achieved by a facile hydrothermal and subsequent electrospinning method. The double carbon layer (inner amorphous carbon and outer carbon fiber) shells could efficiently increase the electron conductivity, prevent the aggregation of MoS2 flakes, and limit the volume change and polysulfide loss during long-term cycling. The as-prepared MoS2/C/C fiber electrode exhibited a high capacity of up to 1,275 mAh/g at a current density of 0.2 A/g, 85.0% first cycle Coulombic efficiency, and significantly increased rate capability and cycling stability. These results demonstrate the potential applications of MoS2/C/C fiber hybrid material for energy storage and may open up a new avenue for improving electrode energy storage performance by fabricating hybrid nanofiber electrode materials with double-layer carbon coatings.
  相似文献   

13.
Despite many encouraging properties of transition metal dichalcogenides (TMDs), a central challenge in the realm of industrial applications based on TMD materials is to connect the large‐scale synthesis and reproducible production of highly crystalline TMD materials. Here, the primary aim is to resolve simultaneously the two inversely related issues through the synthesis of MoS2(1?x )Se2x ternary alloys with customizable bichalcogen atomic (S and Se) ratio via atomic‐level substitution combined with a solution‐based large‐area compatible approach. The relative concentration of bichalcogen atoms in the 2D alloy can be effectively modulated by altering the selenization temperature, resulting in 4 in. scale production of MoS1.62Se0.38, MoS1.37Se0.63, MoS1.15Se0.85, and MoS0.46Se1.54 alloys, as well as MoS2 and MoSe2. Comprehensive spectroscopic evaluations for vertical and lateral homogeneity in terms of heteroatom distribution in the large‐scale 2D TMD alloys are implemented. Se‐stimulated strain effects and a detailed mechanism for the Se substitution in the MoS2 crystal are further explored. Finally, the capability of the 2D alloy for industrial application in nanophotonic devices and hydrogen evolution reaction (HER) catalysts is validated. Substantial enhancements in the optoelectronic and HER performances of the 2D ternary alloy compared with those of its binary counterparts, including pure‐phase MoS2 and MoSe2, are unambiguously achieved.  相似文献   

14.
We have grown single crystals of barium dihydrogen phosphate and studied its thermal transformations during heating to 500°C and its electrotransport properties. Ba(H2PO4)2 (Pccn) has been shown to undergo no phase transitions up to its dehydration temperature. The thermal decomposition of Ba(H2PO4)2, accompanied by dehydration, involves two steps, with maximum rates at ~265 and 370°C, and results in the formation of barium dihydrogen pyrophosphate and barium metaphosphate, respectively. The total enthalpy of the endothermic dehydration events is–244.6 J/g. Using impedance spectroscopy, we have studied in detail the proton conductivity of polycrystalline and single-crystal Ba(H2PO4)2 samples in a controlled atmosphere. Adsorbed water has been shown to have a significant effect on the proton conductivity of Ba(H2PO4)2 up to 130°C. The proton conductivity of the Ba(H2PO4)2 single crystals has been shown to be anisotropic. The conductivity anisotropy correlates with specific structural features of the salt. Higher conductivity values, 3 × 10–9 to 2 × 10–7 S/cm in the range 60–160°C, have been observed in the [100] crystallographic direction, exceeding the conductivity along [010] by an order of magnitude. The activation energy for proton conduction is 0.80 eV.  相似文献   

15.
Developments of nanostructured transition metal dichalcogenides (TMDs) materials as novel electrocatalyst candidates for oxygen reduction reaction (ORR) is a new strategy to promote the developments of non-precious metal ORR catalysts. In this work, a three-dimensional (3D) hybrid of rosebud-like MoSe2 nanostructures supported on reduced graphene oxide (rGO) nanosheets was successfully synthesized through a facile hydrothermal strategy. The prepared MoSe2@rGO hybrid nanostructure showed enhanced electrocatalytic activity for the ORR in alkaline medium compared to that of the pure MoSe2, rGO, and their simple physical mixture, which could benefit from the excellent oxygen adsorption ability of the abundantly exposed active edge sites of the ultrathin MoSe2 layers, the conductivity and aggregation-limiting effect of the rGO platform, as well as the unique 3D rosebud-like architecture of the hybrid material. The electrocatalytic activity of the MoSe2@rGO hybrid towards ORR was comparable to that of commercial Pt/C catalysts. And the promoted reaction was revealed to involve a nearly four-electron-dominated ORR process by analysis of the obtained Koutecky–Levich plots. The scanning electrochemical microscopy (SECM) technique, with the advantages of investigating of the local catalytic activity of samples with high spatial resolution and simultaneously evaluating activities of different catalysts in a single experiment, was further applied to investigate the local ORR electrocatalytic activity of MoSe2@rGO and compare it with those of other catalyst samples through applying different sample potentials. The excellent stability and methanol tolerance of the 3D nanostructured MoSe2@rGO hybrid against methanol further prove the 3D nanostructured MoSe2@rGO hybrid as a promising ORR electrocatalyst in alkaline solution for potential applications in fuel cells and metal–air batteries.
  相似文献   

16.
Multi-layered MoS2 (or WS2) nanocages stuffed with Mo (or CoS/CoO) nanocrystals have been synthesized by using the reaction between metal nanoparticles and sulfur powders. This simple synthesis method, different from the conventional methods for synthesizing pure inorganic fullerenes, is also potentially important for large-scale synthesis of nanoparticles of other metal dichalcogenide. Besides the multi-layered WS2 nanocapsules, we have successfully fabricated nanocapsules with a single-layered WS2 sheet encapsulating W by using the arc-discharge method. We discuss possible mechanisms for the formation of the unique core-shell structured nanocapsules.  相似文献   

17.
In this activity system Tl-Tl2X-X (X = S, Se)are studied using emf measurements of concentration chains relative thallic electrode. The solid phase diagrams of these systems are clarified, homogeneity areas of the compounds Tl6SCl4 and Tl5Se2Cl are determined. On the basis of emf measurement results, relative partial molar functions of thallium in alloys and standard integral thermodynamic functions (ΔG 0(298 K), ΔH 0 (298 K), ΔS 0 (298 K)) of the ternary compounds Tl6SCl4 and Tl5Se2 Cl and phases of variable composition based on the latter are calculated.  相似文献   

18.
In this letter, we report on the growth and characterization of bulk Bi 2Se 3 single crystals. The studied Bi 2Se 3 crystals are grown by the self-flux method through the solid-state reaction from high-temperature (950 °C) melt of constituent elements and slow cooling (2 ℃/h). The resultant crystals are shiny and grown in the [00l] direction, as evidenced from surface XRD. Detailed Reitveld analysis of powder X-ray diffraction (PXRD) of the crystals showed that these are crystallized in the rhombohedral crystal structure with a space group of R3m (D5), and the lattice parameters are a = 4.14 (2), b = 4.14 (2), and c = 28.7010 (7) Å. Temperature versus resistivity (ρ?T) plots revealed metallic conduction down to 2 K, with typical room temperature resistivity (ρ 300 K) of around 0.53 m Ω-cm and residual resistivity (ρ 0 K) of 0.12 m Ω-cm. Resistivity under magnetic field [ ρ(T)H] measurements exhibited large + ve magneto-resistance right from 2 to 200 K. Isothermal magneto-resistance [ ρH] measurements at 2, 100, and 200 K exhibited magneto-resistance (MR) of up to 240 %, 130 %, and 60 %, respectively, at 14 T. Further, the MR plots are nonsaturating and linear with the field at all temperatures. At 2 K, the MR plots showed clear quantum oscillations at above say 10 T applied field. Also, the Kohler plots, i.e., Δρ/ ρ oversus B/ ρ, were seen consolidating on one plot. Interestingly, the studied Bi 2Se 3 single crystal exhibited the Shubnikov-de Haas (SdH) oscillations at 2 K under different applied magnetic fields ranging from 4 to 14 T.  相似文献   

19.
Monodispersed Gd2O2S:Eu3+ nanostructures with tunable morphologies have been selectively fabricated by solvothermal method in the presence of stable inorganic precursors avoiding metalorganic precursors. The size and morphology of the products were controlled successfully by adjusting the reaction conditions. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED) and X-ray photoelectron spectroscopy (XPS). The corresponding UV absorption and photoluminescence excitation spectra show a significant blue-shift confirming the quantum confinement effect. A possible growth mechanism for the formation of monodispersed Gd2O2S:Eu3+ nanocrystals has been proposed. The luminescence mechanism and the size dependence of their fluorescence properties are also discussed.  相似文献   

20.
Highly efficient Ag3PO4/MoS2 nanocomposite photocatalyst was synthesized using a wet chemical route with a low weight percentage of highly exfoliated MoS2 (0.1 wt.%) and monodispersed Ag3PO4 nanoparticles (~5.4 nm). The structural and optical properties of the nanocomposite were studied using various characterization techniques, such as XRD, TEM, Raman and absorption spectroscopy. The composite exhibits markedly enhanced photocatalytic activity with a low lamp power (60 W). Using this composite, a high kinetic rate constant (k) value of 0.244 min-1 was found. It was observed that ~97.6% of dye degrade over the surface of nanocomposite catalyst within 15 min of illumination. The improved photocatalytic activity of Ag3PO4/MoS2 nanocomposite is attributed to the efficient interfacial charge separation, which was supported by the PL results. Large surface area of MoS2 nanosheets incorporated with well dispersed Ag3PO4 nanoparticles further increases charge separation, contributing to enhanced degradation efficiency. A possible mechanism for charge separation is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号