首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe fluorescence resonance energy transfer (FRET) studies of film formation by a new type of two-component latex particles. These particles consist of a miscible blend of two components that have a similar composition but very different molecular weights. In our approach, we used sequential seeded emulsion polymerization to generate (in situ) a fraction of oligomer in poly(butyl acrylate-co-methyl methacrylate) P(BA-MMA) seed particles that contained a relatively high molecular weight (high-M) dye-labeled polymer. In this way we could systematically change the molecular weight distribution of polymer inside the particles. We varied the amount and the molecular weight of the oligomers. For latex films cast from these two-component particles, we studied the diffusion rate of the high molecular weight polymer by FRET. These measurements revealed that oligomers promoted diffusion rate during latex film formation (oligoplasticization). We analyzed our diffusion data in terms of the Fujita–Doolittle free-volume model and showed that higher molecular weight oligomers are less efficient as plasticizers. In separate experiments, oligomers with similar molecular weights as those in the two-component particles were introduced via latex blending. We compared oligoplasticization in latex blends films with that in the two-component particles films. Finally, we investigated the rheological behavior of the two-component polymers with compositions adjusted to have a common Tg (2 °C). The higher the molecular weight of the oligomer, the more that had to be added to achieve Tg = 2 °C. All of the oligomers were much shorter than the entanglement length and act as diluents of the entanglements in the high-M polymer. We found that incorporating larger amounts of oligomers with a higher molecular weight resulted in a more pronounced drop in polymer viscosity, associated with the decrease in the entanglement density.  相似文献   

2.
Poly(γ-benzyl L-glutamate)/poly(butyl acrylate-co-methyl methacrylate) (PBLG/Poly(BA-co-MMA)) blend films were prepared by casting the polymer blend solution in dichloroethane. Surface morphology of the polymer blend film was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Thermal and mechanical properties of the polymer blend film were studied using differential scanning calorimeter (DSC) and tensile tests. It was revealed that the introduction of Poly(BA-co-MMA) into PBLG could exert marked effects on the surface morphology and the properties of the PBLG film.  相似文献   

3.
The steady-state fluorescence technique was used to examine the healing and interdiffusion of polymer molecules as a function of solid content during annealing of latex films above the glass transition (Tg). Films were prepared from a mixture of naphthalene (N)- and pyrene (P)-labeled poly(methy methacrylate) (PMMA) latex particles. Above Tg, interdiffusion of polymer chains was observed by detecting the steady-state energy transfer from excited naphthalene to pyrene molecules. Various latex films with different latex content were used to measure the critical occupation percent for the reliable steady-state fluorescence measurements. Diffusion activation energies in these latex films were measured and found to be around 30 kcal/mol, which was attributed to the backbone motion of PMMA chains. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
Xuezhong Jiang 《Polymer》2006,47(11):4124-4131
The incorporation of high levels of electroactive compounds into a high Tg matrix polymer was investigated in photovoltaic (PV) devices. The combination of electron donor-electron acceptor pairs with optionally light harvesting organics (e.g. laser dyes) in the high Tg polymer matrix yielded PV performance in the range of literature data typically reported for organic based PV devices. The advantages for using a high Tg matrix include increasing the Tg of the electroactive compounds, preventing crystallization, improving the mechanical properties of the active layer(s) and the ability to employ lower cost fabrication processes. While the basic concept has been demonstrated, further optimization would be required to achieve a useful combination of photovoltaic properties. As in the companion paper on utilization of a high Tg polymer to sequester low molecular weight electroactive species for LED devices, this paper demonstrates the same concept for PV devices. The approach to solve the issues with low molecular weight electroactive species noted in the literature to date often involves covalent bonding of these compounds to polymeric backbones. This and the companion paper well-illustrates the blend approach is equally viable and offers a much simpler methodology.  相似文献   

5.
In this article we use fluorescence resonance energy transfer (FRET) to investigate how a classic coalescing aid, such as 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate (Texanol?) (TX), acts on the earliest stages of polymer diffusion as the latex film is still drying. In our approach, we temporarily arrest the drying process of a partially wet latex film by sealing it in an airtight chamber previously cooled to near the latex Tg. At these conditions, we are able to effectively stop the drying process and the polymer diffusion. FRET measurements at various locations on such a sample provide us information about the mechanism operating at the initial stages of polymer diffusion as the latex film is still drying. We complete our study with FRET measurements carried out at longer aging times on predried latex films. We analyze our diffusion data in terms of free volume theory and propose a mechanism that can account for the results obtained.  相似文献   

6.
A novel, low-cost, rapid, accurate, non-invasive and high throughput method based on the principles of Optical Interferometry (OPTI method) has been developed and applied for the in situ monitoring in one simple run of first (melting) and second (glass transition) order transitions as well as of the thermally induced decomposition of various thin polymeric films spin coated on flat reflective substrates (untreated silicon wafers). The new method has been applied successfully for measuring the glass transition, melting and decomposition temperatures of six commercially available polymers [poly(methyl methacrylate) (PMMA), poly(2-hydroxyethyl methacrylate), (PHEMA), poly(vinyl acetate-co-crotonic acid), (PVACA), poly(vinyl pyrrolidone) (PVP), poly(vinyl chloride-co-vinyl acetate) (PVCVA) and crystalline poly(vinylidene fluoride-co-hexafluoropropylene) (PVFHP)] of known Tgs or Tms. The recorded interferometric signals were identified and characteristic signal patterns were qualitatively correlated to specific transitions. The monitoring of first and second order transitions in thin polymeric films is based on detectable differentiations of the total energy of a fixed wavelength laser beam incident almost vertically (angle of incidence <5°) onto a thin polymeric film spin coated on a flat reflective substrate. These differentiations are caused by film thickness and/or refractive index changes of the polymeric film both resulted from the significant change of the polymer's free volume taking place on the transitions. For film thicknesses over approx. 200-250 nm, the Tg or Tm of the polymeric films measured with the OPTI method were in excellent agreement with the corresponding values of the polymer, measured by DSC. An investigation on the trends of the Tg of PHEMA and PMMA films in a wide thickness range (30-1735 nm) was also carried out. Ultra-thin (∼30 nm) films of PMMA and PHEMA showed significant increase in their Tg values by approx. 30 °C upon comparing to their corresponding bulk Tgs. This behavior was attributed to an enhanced polymer-surface interaction through hydrogen bonding and/or to changes in the tacticity of the polymer.  相似文献   

7.
The mechanical properties of films prepared from model high‐glass‐transition‐temperature (Tg)/low‐Tg latex blends were investigated with tensile testing and dynamic mechanical analysis. Polystyrene (PS; carboxylated and noncarboxylated) and poly(n‐butyl methacrylate‐co‐n‐butyl acrylate) [P(BMA/BA); noncarboxylated] were used as the model high‐Tg and low‐Tg latexes, respectively. Carboxyl groups were incorporated into the PS latex particles to alter their surface properties. It was found that the presence of carboxyl groups on the high‐Tg latex particles enhanced the Young's moduli and the yield strength of the PS/P(BMA/BA) latex blend films but did not influence ultimate properties, such as the stress at break and maximum elongation. These phenomena could be explained by the maximum packing density of the PS latex particles, the particle–particle interfacial adhesion, and the formation of a “glassy” interphase. The dynamic mechanical properties of the latex blend films were also investigated in terms of the carboxyl group coverage on the PS latex particles; these results confirmed that the carboxyl groups significantly influenced the modulus through the mechanism of a glassy interphase formation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2788–2801, 2002  相似文献   

8.
The glass-transition temperature (Tg) of polymer thin films can be strongly influenced by the combined effects of the supporting solid substrate and the free surface. The relative importance of these two effects, which often compete with each other, depends on the strength of the substrate–film interactions. Utilizing an atomistically informed coarse-grained model for poly(methyl methacrylate) (PMMA), here we uncover the relationship between the substrate–film interfacial energy and the spatial distribution of Tg across thin films. We find that above a critical interfacial energy, the linear dependence of film Tg on the interfacial energy breaks down and film Tg attains an asymptotic value. Analyses on the spatial variation of Tg across the thin film reveal that the short-range interface near the cohesive surface generates a long-range interphase that leads a spatially uniform appreciation of Tg throughout the film, unlike weakly cohesive surfaces that show sharp gradients along the depth of film. These findings explain recent experiments and reveal a versatile approach for tuning film Tg via engineered substrate-film interactions.  相似文献   

9.
Vivek Thirtha  Thomas Nosker 《Polymer》2006,47(15):5392-5401
The effects uncompatibilized immiscible polymer blend compositions on the Tg of the amorphous polymer were studied in the systems polystyrene/polypropylene (PS/PP), polystyrene/high density polyethylene (PS/PE) and polycarbonate/high density polyethylene (PC/PE). In the two similar systems of PS/PP and PS/PE, the Tg of PS increased with decreasing PS percentage in the blends. This variation in glass transition is attributed to the polymer domain interactions resulting from the different morphologies of various blend compositions. Experiments were conducted to study these effects by preparing blends with various polymers that varied the relationship between the Tg of the amorphous polymer and the crystallization behavior of the semicrystalline polymer. Results show that the variation in amorphous component Tg with composition depends strongly on the physical state of the semicrystalline domains. Whereas the Tg of PS in PS/PE blends changed with composition, the Tg of PC in the PC/PE blend did not change with composition.  相似文献   

10.
Two types of maleic acid diesters, dibutyl maleate (DBM) and dioctyl maleate (DOM) were used as comonomers in semicontinuous emulsion copolymerization of vinyl acetate (VAc) in order to improve the film properties of poly(vinyl acetate), PVAc emulsion polymer. The effects of the comonomer type and comonomer ratio on minimum film forming temperature (MFFT), glass transition temperature (Tg), polymer structure, molecular weights, water contact angle and water resistance of PVAc latex films were examined. It was found that MFFT and Tg of the PVAc emulsion polymer decreased by the presence of the maleic acid disters in copolymer composition. This decrease was more affected by the increasing content and alkyl chain length of the comonomers. The molecular weights of the emulsion polymers were also affected by the comonomers and their ratios. Moreover, hydrophobicity and water resistance of the PVAc latex films were increased by using DBM and DOM as comonomer.  相似文献   

11.
In this article, silica sol (diameter: 8–100 nm) and polymer latex (Tg < 25°C) were mixed and dried at room temperature to prepare nanocomposite films with high silica load (≥50 wt %). Effects of silica size, silica load, and the Tg of the polymer on the film‐forming behavior of the silica/polymer latex blend were investigated. The transparency, morphology, and mechanical properties of the nanocomposite films were examined by UV–Vis spectroscopy, SEM, and nanoindentation tests, respectively. Transparent and crack‐free films were produced with silica loads as high as 70 wt %. Thirty nanometers was found to be the critical silica size for the evolution of film‐forming behavior, surface morphology, and mechanical properties. Colloidal silica particles smaller than this critical size act as binders to form strong silica skeleton. This gives the final silica/polymer nanocomposite film its porous surface and high mechanical strength. However, silica particles with sizes of 30 nm or larger tend to work as nanofillers rather than binders, causing poor mechanical strength. We also determined the critical silica load appeared for the mechanical strength of silica/polymer film at high silica load. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
A series of poly(hydroxystyrene-co-vinylpyrrolidone-co-isobutylstyryl polyhedral oligosilsesquioxanes) (PHS-PVP-POSS) hybrid polymers with various POSS contents was prepared by free radical copolymerization of acetoxystyrene, vinylpyrrolidone with styrylisobutylpolyhedral oligosilsesquioxanes (POSS), followed by selective removal of the acetyl protective group. The POSS content of a hybrid polymer can be effectively controlled by varying the feed ratios of reactants. The Tg of the POSS hybrid increases with the POSS content of PHS-PVP-POSS hybrids. The mechanism of Tg enhancement in these PHS-PVP-POSS hybrids was investigated using DSC, FTIR and GPC. The formation of the physically cross-linked POSS in these hybrid polymers trends to restrict polymer chain motion and results in significant Tg increase.  相似文献   

13.
This article is concerned with the effect of the inherent matrix properties (matrix molar mass and crystallinity) as well as the temperature on the impact behaviour of rubber toughened semicrystalline polyethylene terephthalate (PET). The dispersed phase consists of a blend of an ethylene-co-propylene rubber (EPR) and a copolymer of ethylene and 8 wt% glycidyl methacrylate (E-GMA8) acting as a compatibilising agent, leading to PET/(EPR/E-GMA8) blends. The influence of the matrix molar mass on the impact behaviour of rubber toughened PET is found to primarily originate from its effect on the blend phase morphology, rather than from an inherent effect of the molar mass itself. The dispersed phase particle size is seen to decrease with increasing PET molar mass. A direct correlation between the impact strength and the interparticle distance could be established. A critical interparticle distance (IDc) of 0.1 μm could be determined, independent of the PET molar mass. The brittle-ductile transition temperature (Tbd) of the blends with a varying matrix molar mass also displayed a strong correlation with the interparticle distance, independent of the matrix molar mass. However, this correlation appears to depend on the crystalline characteristics of the PET matrix material since an incompletely crystallised PET matrix leads to an increase of the Tbd.  相似文献   

14.
A series of copolyimides were prepared via the polyamide acids (polyamic acids) from the reaction of 2,3,3′,4′-biphenyltetracarboxylic dianhydride (a-BPDA) and pyromellitic dianhydride (PMDA) with 4,4′-oxydianiline (4,4′-ODA) at dianhydride molar ratios of 9:1, 7:3, 1:1, 3:7 and 1:9. Homopolymers and a 1:1 polymer blend were also prepared. Films from the 7:3, 1:1 and 3:7 molar ratio polyamide acids reacted for 5-6 h at ambient temperature were brittle, whereas films from the same polyamide acids reacted for 24-48 h at ambient temperature were fingernail creaseable. The difference was apparently due to the initial formation of incompatible block domains that underway randomization upon longer reaction time. The differential scanning calorimetric (DSC) curves of some of the brittle films quenched after heating to 400 °C had two apparent glass transition temperatures (Tgs), indicative of two block domains. The creaseable films quenched after heating to 400 °C had single Tgs. Wide-angle X-ray diffraction showed all films to be amorphous even though the initial DSC curves showed strong endothermic peaks, generally associated with crystalline melts. These strong endotherms near the Tg region were thought to be due to relaxation of regions in the highly stressed films. Films of copolyamide acids from the reaction of 1:1 molar ratios of 3,3′,4,4′-oxydiphthalic anhydride/a-BPDA and 3,3′,4,4′-biphenyltetracarboxylic dianhydride/a-BPDA with 4,4′-ODA reacted for 6 h were fingernail creaseable. The chemistry and the properties of the copolymers are compared with those of the homopolymers.  相似文献   

15.
Chun-Yi Chiu 《Polymer》2007,48(5):1329-1342
We have used DSC, FTIR spectroscopy, and ac impedance techniques to investigate the interactions that occur within complexes of poly(vinylpyrrolidone-co-methyl methacrylate) (PVP-co-PMMA) and lithium perchlorate (LiClO4) as well as these systems' phase behavior and ionic conductivities. The presence of MMA moieties in the PVP-co-PMMA random copolymer has an inert diluent effect that reduces the degree of self-association of the PVP molecules and causes a negative deviation in the glass transition temperature (Tg). In the binary LiClO4/PVP blends, the presence of a small amount of LiClO4 reduces the strong dipole-dipole interactions within PVP and leads to a lower Tg. Further addition of LiClO4 increases Tg as a result of ion-dipole interactions between LiClO4 and PVP. In LiClO4/PVP-co-PMMA blend systems, for which the three individual systems—the PVP-co-PMMA copolymer and the LiClO4/PVP and LiClO4/PMMA blends—are miscible at all compositional ratios, a phase-separated loop exists at certain compositions due to a complicated series of interactions among the LiClO4, PVP and PMMA units. The PMMA-rich component in the PVP-co-PMMA copolymer tends to be excluded, and this phenomenon results in phase separation. At a LiClO4 content of 20 wt% salt, the maximum ionic conductivity occurred for a LiClO4/VP57 blend (i.e., 57 mol% VP units in the PVP-co-PMMA copolymer).  相似文献   

16.
P(S-b-MMA) and P(B-b-MMA) diblock copolymers (BCP) have been solubilized in a liquid epoxy. The obtained solutions have been characterized by rheology and small angle X-ray scattering (SAXS). As in the solid state, BCP can self-organize in solution to form well-ordered micellar structures. The two blocks respective roles have been clearly identified: at room temperature the PS or the PB block microsegregates while the PMMA block for which epoxy constitutes a good solvent, acts as a stabilizer of the microphase separation. The geometries and thermal stabilities of the ordered structures depend strongly on the molar masses and the chemical nature of the BCP blocks. For instance, the total molar mass of the BCP has to be high enough to obtain a periodic structure. On the contrary, if this molar mass is too high, too long relaxation times prevent the system from reaching its equilibrium. For the P(S-b-MMA) copolymer solution, a transition temperature from an order to a disorder state (TODT) is observed. The origin of this transition has been attributed to a solubilization of the PS domains around TODT. Macroscopically, this transition can be defined as a solid-like to a liquid-like transition. In the case of the P(B-b-MMA) copolymer solution, no order-disorder transition has been observed: it can be explained by the fact that the PB blocks are not soluble in epoxy at any temperature, up to T=200 °C.  相似文献   

17.
Two groups of polyacrylate latexes with higher (21 ~ 35 °C) or lower (−33 ~ −43 °C) glass transition temperatures (Tg) were prepared by adjusting the monomer ratio of butyl acrylate (BA) and styrene (St), and the effect of acrylic acid (AA) on water-whitening resistance of these latex films was investigated. It was found that the water-whitening resistance of the two groups of latex films was different. With the increase of AA content, the water whitening resistance of the latex films with higher Tg continued to improve, while that of the latex films with lower Tg increased first and then decreased. A series of characterizations, such as light transmittance, water whitening, water absorption, static water contact angle, surface morphology, and optical microscope test of the latex film, and so forth, showed that the reason for this difference was that under higher AA content (≥5%), compared with the polyacrylate latex films with lower Tg, the latex films with higher Tg could reach the saturation state of water absorption quickly, and water in these latex films exhibited continuous and large area distribution, rather than formation of many so-called micro- or nano-scale water sacs that can scatter light as found in the latex films with lower Tg.  相似文献   

18.
Alkoxysilane-functionalized poly (styrene-co-butyl acrylate) latex was prepared via miniemulsion copolymerization of γ-methacryloxypropyltrimethoxysilane (MPS), styrene and butyl acrylate using AIBN at neutral condition. The effects of initiator types, pH values, and MPS contents on the premature cross-linking of the latex particles and the mechanical properties of the films were investigated by the swelling experiments and dynamic mechanical analysis. It was found that the storage modulus of the latex films and the glass transition temperature (Tg) increased with increasing MPS content. The acidification of latex prior to film formation and annealing the latex films could improve the mechanical properties of the films.  相似文献   

19.
Tatsuro Ouchi 《Polymer》2003,44(14):3927-3933
Polylactide (PLA)-grafted polysaccharides with various lengths and numbers of graft chains were synthesized using a trimethylsilyl protection method. The properties of the cast films prepared from graft-copolymers were investigated through thermal and dynamic mechanical analyses. The graft-copolymer films exhibited a lower glass transition temperature (Tg), melting temperature, and crystallinity, and higher viscosity properties compared to PLA films. Moreover, the usefulness of graft-copolymer as a plasticizer was investigated with 1:4 blend films prepared from the graft-copolymers and PLA. The blend films showed lower Tg and crystallinity, and higher viscosity properties compared to PLA films.  相似文献   

20.
We have employed steady sate fluorescence (SSF) and UV‐visible (UVV) techniques to determine the film formation behavior of latex blends. Blend films were prepared from mixtures of a high‐Tg pyrene (P) labeled polystyrene (PS) latex and a low‐Tg copolymer of poly(butyl acrylate‐co‐methyl methacrylate) (BuA/MMA4). Eleven different blend films were prepared in various hard/soft latex compositions at room temperature and annealed at elevated temperatures above glass‐transition (Tg) temperature of polystyerene for 10 min. Fluorescence intensity (IP) from P was measured after each annealing step to monitor the stages of film formation. The evolution of transparency of latex films was monitored using photon transmission intensity, Itr. Film morphologies were examined by atomic force microscopy (AFM). A significant change occurs in both IP and Itr intensities at a certain critical weight fraction of hard latex (Rc = 0.3). Above Rc, two distinct film formation stages, which are named as void closure and interdiffusion processes, were seen in fluorescence data. Transparency of the films was decreased with decreasing PS content, indicating that a phase separation process occurs between PS and BuA/MMA4 phases by thermal treatment, which results in turbid films. However, below Rc, no change was observed in IP and Itr upon annealing, whereas transparency increased overall with increasing BuA/MMA4 ratio. We explained this result as the phase separation process between PS and BuA/MMA4 blends. These results were also confirmed by AFM pictures. Film formation stages above Rc were modeled and related activation energies were calculated. POLYM. COMPOS., 27:431–442, 2006. © 2006 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号