首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Pt-loaded metal oxides [WO3/ZrO2, MOx/TiO2 (MOx = WO3, MoO3, V2O5), WO3 and TiO2] equipped with interdigital Au electrodes have been tested as a NOx (NO and NO2) gas sensor at 500 °C. The impedance value at 4 Hz was used as a sensing signal. Among the samples tested, Pt-WO3/TiO2 showed the highest sensor response magnitude to NO. The sensor was found to respond consistently and rapidly to change in concentration of NO and NO2 in the oxygen rich and moist gas mixture at 500 °C. The 90% response and 90% recovery times were as short as less than 5–10 s. The impedance at 4 Hz of the present device was found to vary almost linearly with the logarithm of NOx (NO or NO2) concentration from 10 to 570 ppm. Pt-WO3/TiO2 showed responses to NO and NO2 of the same algebraic sign and nearly the same magnitude, while Pt/WO3 and WO3/TiO2 showed higher response to NO than NO2. The impedance at 4 Hz in the presence of NO for Pt-WO3/TiO2 was almost equal at any O2 concentration examined (1–99%), while in the case of Pt/WO3 and WO3/TiO2 the impedance increased with the oxygen concentration. The features of Pt-WO3/TiO2 are favorable as a NOx sensor that can monitor and control the NOx concentration in automotive exhaust. The effect of WO3 loading of Pt-WO3/ZrO2-based sensor is studied to discuss the role of surface W-OH sites on the NOx sensing.  相似文献   

2.
Simultaneous measurement of total NOx and O2 using two electrochemical methods are demonstrated using metal/metal oxide internal oxygen reference electrode-based sensors at high temperatures. The Pd/PdO-containing reference chamber was sealed within a stabilized zirconia superstructure by a high pressure/temperature plastic deformation bonding method exploiting grain boundary sliding between the ceramic components. Amperometric and potentiometric NOx sensing devices were assembled on the outside of the sensor. Pt-loaded zeolite Y was used to obtain total NOx capability. Both the amperometric and potentiometric type sensors showed total NOx response, with the potentiometric device showing better NOx/O2 signal stability and lower NOx–O2 cross-interference. Since these sensors do not require plumbing for reference air, there is more flexibility in the placement of such sensors in a combustion stream.  相似文献   

3.
Flexural In2O3 nanowires with high aspect ratios were synthesized via a hydrothermal–annealing route. The as-synthesized In2O3 nanowires had diameters of 30–50 nm and length up to several microns. Various reaction parameters, such as the kind of reagents, the time of hydrothermal treatment, annealing time and annealing temperature, were investigated by a series of control experiments. The as-synthesized In2O3 nanowires showed excellent gas-sensing properties to NO2 in terms of sensor response and selectivity.  相似文献   

4.
Oxide semiconductors have been examined to develop NOx sensors for exhaust monitoring. Titania doped with trivalent elements, such as Al3+, Sc3+, Ga3+ or In3+, has a good sensitivity and selectivity to NO between 450 and 550 °C, and shows rapid response. A sensor probe for monitoring exhaust NOx has been fabricated. Many kinds of interference gases, such as C3H6, CO and SO2, have been found to have only a slight influence on the sensor response to NO. The influence of O2 and H2O is also negligible, except for the cases of 0% H2O and fuel-rich conditions. In accordance with these results, the sensor probe operates satisfactority in the exhaust gas of various combustion conditions without interference from the various kinds of gas species in the exhaust gases.  相似文献   

5.
Solid-electrolyte-based electrochemical SOx sensors fabricated with MgO-stabilized zirconia and Li2SO4---CaSO4---SiO2 (4:4:2 in molar ratio) exhibit fairly good sensing characteristics for 2–200 ppm SO2 in air at 600–750 °C, with the e.m.f. responses following the Nernst equation for the two-electron reduction of SO2. The 90% response and 90% recovery times to 20 ppm SO2 are 10 s and 7 min at 650 °C, and 10 s and 3 min at 700 °C, respectively. It is further found that the sensor exhibits excellent selectivity to SOx in the coexistence of CO2 and NOx, and good long-term stability. The sensor is simple in structure, easy to prepare, and quite tough chemically and mechanically. These features should ensure practical use for this SOx sensor.  相似文献   

6.
G.  I.  M.  J.R.   《Sensors and actuators. B, Chemical》2007,120(2):679-686
The gas-sensing properties of SnO2-based thin films designed for ozone detection are discussed in this paper. The influence of film characteristics on sensor performance is analyzed. SnO2 films with thickness 30–200 nm were deposited by spray pyrolysis. The SnO2 films have a response to ozone that is quantitative and rapid and sufficient for use in ozone control and monitoring applications. Sensor performance is compared with similarly prepared sensors fabricated from In2O3- and WO3-based films. The mechanism of the processes controlling the sensor response characteristics is proposed. The data support our conclusion that the reaction with ozone using the SnO2-film sensors is limited by the adsorption/desorption processes.  相似文献   

7.
Ultrafine SmFe0.7Co0.3O3 powder, prepared by a sol–gel method, shows a single-phase orthogonal perovskite structure. The influence of annealing temperature upon its crystal cell volume, microstructure, electrical and ethanol-sensing properties was investigated in detail. When the annealing temperature increases from 600 to 950 °C, the unit cell volume of the SmFe0.7Co0.3O3 sample reduces, and its average grain size increases. When the annealing temperature increases from 600 to 850 °C, the optimal working temperature and response to ethanol of the SmFe0.7Co0.3O3 sensor increase, and the response–recovery time shortens. But when the annealing temperature further increases from 850 to 950 °C, there are decreases of the optimal working temperature and sensor response, and the response–recovery time is prolonged. The results indicate that, as for sensor response, its optimal annealing temperature is about 850 °C, and the sensor based on SmFe0.7Co0.3O3 annealed at 850 °C shows the highest response S = 80.8 to 300 ppm ethanol gas, and it has the best response–recovery and selectivity characteristics. When the ethanol concentration is as low as 500 ppm, the curve of its optimal response versus concentration is nearly linear. Meanwhile, the influence mechanisms of annealing temperature upon the conductance, the optimal working temperature and sensor response for SmFe0.7Co0.3O3 were studied.  相似文献   

8.
I.  S.  A.  S.  A.  Ram  A.   《Sensors and actuators. B, Chemical》2008,130(2):882-888
Nanocrystalline gamma iron oxide (γ-Fe2O3) has been synthesized at room temperature through sonication-assisted precipitation technique. The key in obtaining γ-Fe2O3 at room temperature lies in exploiting high-power ultrasound (600 W). The gas-sensing properties to n-butane of pure γ-Fe2O3 were investigated by studying the electrical properties of the sensor elements fabricated from the synthesized powder. The maximum response (90%) of the sensor to 1000 ppm n-butane at 300 °C can be explained on the basis of catalytic activity of the nanocrystallites. The response and recovery time of the sensor to 1000 ppm n-butane were less than 12 s and 120 s, respectively.  相似文献   

9.
In this paper the influence of additives on gas response of In2O3-based one-electrode sensors is discussed. The analysis of Raman scattering of doped In2O3 ceramics was carried out, and the mechanism of doping influence on In2O3 grain structure is suggested. It is concluded that the appearance of the second phase in In2O3-based ceramics is the main factor controlling the change of gas sensing characteristics.  相似文献   

10.
We report on electrical responses of tungsten oxide thin film ozone sensors based on a tungsten trioxide (WO3)/tin oxide (SiO2)/Si structure with interdigitated Pt electrodes. The influence of O2 concentration in the sputtering gas and working temperature of the sensor are investigated. Sensitivity to ozone increases with O2 content in the sputtering gas. It reaches its highest value for sensors fabricated with 50% O2. For these sensors, the best ozone sensitivity and shortest response and recovery times are obtained at a working temperature of 523 K. Ozone sensitivity is compared to other ozone sensors.  相似文献   

11.
Potentiometric cell, Au/LiCoO2 5 m/o Co3O4/Li2.88PO3.73N0.14/Li2CO3/Au, has been fabricated and investigated for monitoring CO2 gas. A LiCoO2–Co3O4 mixture was used as the solid-state reference electrode instead of a reference gas. The idea is to keep the lithium activity constant on the reference side using thermodynamic equilibrium at a given temperature. The thermodynamic stability of the reference electrode was studied from the phase stability diagram of Li–Co–C–O system. The Gibb’s free energy of formation of LiCoO2 was estimated at 500°C from the measured value of the cell emf. The sensors showed good reversibility and fast response toward changing CO2 concentrations from 200 to 3000 ppm. The emf values were found to follow a logarithmic Nernstian behavior in the 400–500°C temperature range. CH4 gas did not show any interference effect. Humidity and CO gas decreased the emf values of the sensor slightly. NO and NO2 gases affect this sensor significantly at low temperatures. However, increased operating temperature seems to reduce the interference.  相似文献   

12.
V1−xyWxSiyO2 films for uncooled thermal detectors were coated on sodium-free glass slides with sol–gel process, followed by the calcination under a reducing atmosphere (Ar/H2 5%). The V1−xyWxSiyO2 films as prepared inherit various phase transition temperatures ranging from 20 to 70 °C depending on the dopant concentrations and the fabrication conditions. Compared to the hysteresis loop of plain VO2 films, a rather steep loop was obtained with the addition of tungsten components, while a relaxed hysteresis loop with the tight bandwidth was contributed by Si dopants. Furthermore, the films with switching temperature close to room temperature were fabricated to one-element bolometers to characterize their figures of merit. Results showed that the V0.905W0.02Si0.075O2 film presented a satisfactory responsivity of 2600 V/W and detectivity of 9 × 106 cm  Hz1/2/W with chopper frequencies ranging from 30 to 60 Hz at room temperature. It was proposed that with appropriate amount of silicon and tungsten dopants mixed in the VO2, the film would characterize both a relaxed hysteresis loop and a fair TCR value, which effectively reduced the magnitude of noise equivalent power without compromising its performance in detectivity and responsivity.  相似文献   

13.
Thin films of Y2O3 : Eu cathodoluminescent (CL) phosphors were deposited using pulsed laser deposition using deposition temperature between 250°C and 800°C, O2 pressures between residual vacuum (2×10−5 Torr) and 6 Torr, and post annealing up to 1200° for 1 h in air. The CL efficiency of the best thin film was about one third that of the starting powder. The brightness and efficiency of the thin films improved as the deposition temperature, O2 pressure and post annealing temperature were increased, except that O2 pressures above 600 mTorr did not significantly improve the CL properties. At deposition temperatures >600°C, the surface morphology changed from a smooth film to a nodular deposit for O2 pressures >200 mTorr, with nodule dimensions ≈100 nm. Simultaneously, the CL properties improved dramatically because of enhanced optical scattering out of the thin film. Optical scattering was discussed in terms of anomalous diffraction. The CL properties also improved dramatically with high temperature post annealing. This effect was interpreted in terms of improved crystallinity and activation of the Eu. The low brightness and efficiency of thin films versus powder was affected by depletion of the Eu in the thin films owing to the deposition process.  相似文献   

14.
ZnFe2O4 tubes with mesoscale dimensions were synthesized by pyrolysis of polyvinyl alcohol (PVA)-mediated xerogel using porous alumina as a template. The product formation was analyzed by X-ray powder diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetry and differential thermal analysis (TG–DTA), scanning electronic microscopy (SEM), transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). This synthetic method yielded open-ended ZnFe2O4 tubes with a typical length of several micrometers, an outer diameter of about 200 nm, and an average thin wall of 20 nm composed of small nanocrystals. Application of the ZnFe2O4 tubes as gas sensor materials displayed low-energy consumption and high sensitivity to organics such as ethanol and acetone, due to the unique interconnected channel structure and small crystal size of the tubes, showing their potential application in sensor areas.  相似文献   

15.
Zinc oxide (ZnO) is a well-known semiconducting multifunctional material wherein properties right from the morphology to gas sensitivity can be tailor-made by doping or surface modification. Aluminum (Al)-incorporated porous zinc oxide (Al:ZnO) exhibits good response towards NO2 at low-operating temperature. The NO2 gas concentration as low as 20 ppm exhibits S = 17% for 5 wt.% Al-incorporated ZnO. The NO2 response increases with operating temperature and concentration and reaches to its maximum at 300 °C without any interference from other gases such as SO3, HCl, LPG and alcohol. Physico-chemical characterization likes differential thermogravimetric analysis (TG-DTA) electron paramagnetic resonance (EPR) and diffused reflectance spectroscopy (DRS) have been used to understand the sensing behavior for pure and Al-incorporated ZnO. The TG-DTA depicts formation of ZnO phase at 287 °C. The EPR study reveals distinct variation for O (g = 2.003) and Zn interstitial (g = 1.98) defect sites in pure and Al:ZnO. The DRS studies elucidate signature of adsorbed NOx species in aluminium-incorporated zinc oxide indicating its tendency to adsorb these species even at low temperatures. This paper is an attempt to correlate the gas sensing behavior with the physico-chemical studies such as EPR and DRS.  相似文献   

16.
Polyacrylamide (PAA) and amine-functionalized PAA (AFPAA) nanoparticles with disulfonated 4,7-diphenyl-1,10-phenantroline ruthenium (Ru(dpp(SO3)2)3) have been prepared. The nanoparticles produced have a hydrodynamic radius of 20–25 nm.

The amount of singlet oxygen (1O2) produced by Ru(dpp(SO3)2)3 as been measured using anthracene-9,10-dipropionic acid (ADPA). A kinetic model for the disappearance of ADPA, by steady state irradiation of Ru(dpp(SO3)2)3 at 465 nm, has been developed taking also into account a consumption not mediated by 1O2. This direct consumption of ADPA is evaluated by irradiating in the presence of NaN3 and is about 30% of the total. All the experimental results are very well described by the model developed, both for free Ru(dpp(SO3)2)3 and with this dye incorporated in the nanoparticles.

It is found that the polyacrylamide matrix does not quench the 1O2 produced, allowing it to reach the external solution of the nanoparticles and react with ADPA. When the matrix possesses amine groups, AFPAA, the amount of 1O2 that reacts with ADPA is slightly reduced, 60%, but most of the 1O2 produced can still leave the particles and react with external molecules. The particles produced may therefore be used as sources of 1O2 in photodynamic therapy (PTD) of cancers. The fact that those nanoparticles do not quench significantly the 1O2 makes possible the future development of 1O2 sensors based on PAA nanoparticles with the appropriate sensor molecule enclosed.  相似文献   


17.
This paper describes the fabrication procedure as well as the sensing properties of new hydrogen sensors using Fe2O3-based thin film. The film is deposited by the r.f. sputtering technique; its composition is Fe2O3, TiO2(5 mol%) and MgO(0–12 mol%). The conductance change of the film is examined in various test gases. The sensitivity to hydrogen gas is enhanced by treating the film in vacuum at 550 °C for 4 h and then in air at 700 °C for 2 h. The sputtered film is identified to be polycrystalline -Fe2O3 based on X-ray diffraction patterns. However, the surface layer is considered to be changed to Fe3O4 after heating in vacuum and then to γ-Fe2O3 after heating in air. The film is thus a multilayer one with a thin γ-Fe2O3 layer on a -Fe2O3 layer. The sensing mechanism is discussed based on measurements of the physical properties of the film, such as the temperature dependence of the sensor conductance, X-ray diffraction pattern, surface morphology, RBS (Rutherford back-scattering) spectrum and optical absorption spectrum.  相似文献   

18.
A highly sensitive and fast responding CO sensor was fabricated from a sheet-like SnO2. The SnO sheets were prepared by a room temperature reaction between SnCl2, hydrazine and NaOH, and they were subsequently oxidized into SnO2 sheets at high temperature (600 °C). The morphology and size of the SnO2 sheets could be controlled during the formation of SnO, which influence the sensor response (Ra/Rg) and response time to a great extent. The sensor response of SnO nanosheets to 10 ppm CO was enhanced up to 2.34, and the 90% sensor response time could be reduced to 6 s, which are significantly higher and shorter than those of SnO2 powders (1.57 and 88 s), respectively. The realization of both a high sensitivity and rapid response were explained in terms of rapid gas diffusion onto the entire sensing surface due to the less-agglomerated and very thin structure of SnO2 nanosheets and the catalytic effect of Pt.  相似文献   

19.
The nano–micro-integrated sensor has been fabricated by sol–gel depositing the nanocrystalline indium oxide (In2O3)-doped tin oxide (SnO2) thin film on microelectromechanical systems (MEMS) device having interdigitated electrode configurations with two different electrode spacing (10 μm and 20 μm) and two different number of fingers (8 and 20). The present nano–micro-integrated sensor exhibits high H2 sensitivity range (S = 3–105) for the H2 concentration within the range of 100–15,000 ppm at room temperature. It has been demonstrated that, the room temperature response kinetics of the present nano–micro-integrated sensor is a function of finger spacing, H2 concentration and air-pressure, but independent of number of fingers. Such dependence has been explained on the basis of Le Chatelier's principle applied to the associated H2 sensing mechanism and the role of above parameters in shifting the dynamic equilibrium of the involved surface reactions under the described test conditions. A new definition of the response time has been proposed, which is not only suitable for the theoretical analysis but also for the practical applications, where a gas-leak detection alarm is required to be triggered.  相似文献   

20.
The interesting hydrogen sensing characteristics of two transistors with an Al0.24Ga0.76As (device A) and In0.49Ga0.51P (device B) Schottky layer are demonstrated and studied. Experimentally, device A shows a lower hydrogen detection limit of 4.3 ppm H2/air, a higher current variation of 7.79 mA and a shorter adsorption time of 10.95 s in a 9970 ppm H2/air at room temperature. On the other hand, device B exhibits more stable hydrogen-sensing characteristics at high temperatures. Even at a low concentration of 14 ppm H2/air the hydrogen sensing properties of device B can be obtained as the temperature increases from 30 to 160 °C. Because the Al0.24Ga0.76As and In0.49Ga0.51P materials are lattice-matched to the GaAs substrate, the studied devices can be integrated as sensor arrays to obtain superior hydrogen sensing characteristics including higher sensing signals, lower detection limit, shorter response time, and widespread detection and temperature regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号