首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Space-time block codes (STBCs) from coordinate interleaved orthogonal designs (CIODs) offer several advantages including full-diversity and single-symbol decodability. In an effort to assess their performance in quasi-static frequencynonselective i.i.d. Nakagami-m fading channels, we analyze the error rate, outage capacity, and information outage probability. First, based on an accurate closed-form formula for the average symbol pairwise error rate (SPER), we derive tight union upper and lower bounds on the symbol-error rate (SER). Second, we apply Gaussian and Gamma approximations to provide closedform expressions for the outage capacity. Third, using high signal-to-noise ratio (SNR) and moment-matching approximation techniques, we also derive accurate closed-form approximations for the information outage probability (IOP). Finally, we show that STBCs from CIODs provide full-diversity by deriving SERbased and IOP-based asymptotic and instantaneous diversity orders. Monte-Carlo simulations show that the analytical results agree with simulation experiments.  相似文献   

2.
杨亮  秦家银 《电子学报》2006,34(1):107-109
本文全面地分析了在Nakagami-m衰落信道下具有"匙孔"(keyhole)效应时正交块空时编码(STBCs)的多输入多输出 (MIMO)系统的容量以及误比特率(BER)性能,导出了该系统环境下平均容量的紧下边界值,同时得出了系统中断概率的具体表达式及其误码率的近似值.在此基础上分析了Keyhole MIMO信道下的天线选择问题.最后进行了仿真,其结果与理论分析一致.研究表明,在Keyhole MIMO信道中,采用天线选择仍然能够获得与全复杂系统相同的分集增益.  相似文献   

3.
Outage probability of diversity systems over generalized fading channels   总被引:1,自引:0,他引:1  
Outage probability is an important performance measure of communication systems operating over fading channels. Relying on a simple and accurate algorithm for the numerical inversion of the Laplace transforms of cumulative distribution functions, we develop a moment generating function-based numerical technique for the outage probability evaluation of maximal-ratio combining (MRC) and postdetection equal-gain combining (EGC) in generalized fading channels for which the fading in each diversity path need not be independent, identically distributed, nor even distributed according to the same family of distributions. The method is then extended to coherent EGC but only for the case of Nakagami-m fading channels. The mathematical formalism is illustrated by applying the method to some selected numerical examples of interest showing the impact of the power delay profile and the fading correlation on the outage probability of MRC and EGC systems.  相似文献   

4.
基于机会中继和最大比合并下的协作通信系统   总被引:3,自引:0,他引:3  
徐峰  岳殿武  严秋娜 《通信学报》2009,30(12):36-44
分析了机会中继和最大比合并下的协作通信系统性能.首次给出了Nakagami衰落信道下的符号错误率和中断概率的精确闭式结果.通过对中断概率的近似结果分析发现对于任意一条源节点-中继-目的节点链路,分集增益均由源节点-中继链路和中继-目的节点链路中的深衰落链路决定.  相似文献   

5.
Outage Capacity of the Fading Relay Channel in the Low-SNR Regime   总被引:1,自引:0,他引:1  
In slow-fading scenarios, cooperation between nodes can increase the amount of diversity for communication. We study the performance limit in such scenarios by analyzing the outage capacity of slow fading relay channels. Our focus is on the low signal-to-noise ratio (SNR) and low outage probability regime, where the adverse impact of fading is greatest but so are the potential gains from cooperation. We showed that while the standard Amplify-Forward protocol performs very poorly in this regime, a modified version we called the Bursty Amplify-Forward protocol is optimal and achieves the outage capacity of the network. Moreover, this performance can be achieved without a priori channel knowledge at the receivers. In contrast, the Decode-Forward protocol is strictly suboptimal in this regime. Our results directly yield the outage capacity per unit energy of fading relay channels  相似文献   

6.
Slow fading channel is one of the most important channels, which appears widely in a cellular mobile system. It has several problems such as bad effects of fading, which causes an attenuation to the signal. This paper presents a new scheme in cooperative communication system under slow fading channel to enhance and increase the quality of communication systems performance. This new scheme is called a cooperative multiple input–multiple output Antenna. The main idea of this scheme depends on transmitting multi copy of message via two paths. It’s performance has been compared with MIMO technique in term of outage probability. The results show that the negative effects of fading are mitigated and the outage probability and diversity gain are enhanced. Furthermore, the reliability in communication system under slow fading channel is improved.  相似文献   

7.
In this letter, outage probability of dual-hop decode-and-forward (DF) relaying scheme is analyzed over mixed Rayleigh and generalized Gamma fading channels. Cooperation model considered in this work consists of a source, a relay and a destination. It is assumed that source-relay and relay-destination channels experience Rayleigh fading and generalized Gamma fading, respectively. Exact outage probability expression is derived and outage performance is illustrated for both direct transmission and DF relaying scheme.  相似文献   

8.
Wireless communication systems are subject to short- and long-term fading of the channel. Instead of the commonly used Nakagami–lognormal model to account for the conditions existing in these shadowed fading channels, a compound probability density function (pdf) model is used to evaluate the performance of wireless systems. While the Nakagami–lognormal lacks a closed-form solution to the pdf of the received power in shadowed fading channels, the compound pdf has an analytical expression for the pdf of the received signal power. The synergy between these two models for the analysis of wireless systems is explored by calculating the bit error rate in a DPSK modem as well as the outage probability in a wireless system in a shadowed fading channel. This is followed by the computation of the outage probability in the general case where both the desired and cochannels are subject to shadowing and fading. The analyses were carried out for both fixed number of cochannels and random number of cochannels. Results demonstrate the usefulness of the compound pdf model for the performance analyses of wireless systems in shadowed fading channels.  相似文献   

9.
In this paper, space-time block-coded transmission over frequency-selective fading channels is investigated. A lower bound for the pairwise error probability for optimum detection is given. Also, an approximation for the bit-error rate is derived and compared with simulation results for maximum-likelihood sequence estimation (MLSE) for the GSM/EDGE (Enhanced Data Rates for GSM Evolution) system. Furthermore, a novel design rule for space-time block codes (STBCs) for frequency-selective fading channels is provided. A corresponding code is designed and shown to yield higher performance than Alamouti's code. It is demonstrated that for fading channels with L independent impulse response coefficients, STBCs designed for the flat fading channel can achieve at most a diversity order of (N/sub T/+L-1)N/sub R/ if N/sub T/ transmit antennas and N/sub R/ receive antennas are used. On the other hand, the maximum diversity order employing the proposed code design rule is LN/sub T/N/sub R/.  相似文献   

10.
In this paper, we analyze the performance of a coded cooperation based communication system using independent flat Nakagami-m fading channels. We examine the outage behavior of the cooperative system constrained on instantaneous received power which follows the Gamma distribution. The expression for outage probability of the coded cooperative communication system is derived which is applicable for arbitrary value of parameter m and contains single integral terms only. Finally, we present an analytical approach to evaluate the critical cooperation ratio that minimizes the total outage probability of the cooperative system.  相似文献   

11.
栾宇  李洪祚  王亚非 《中国通信》2012,9(12):108-116
Cognitive radio allows Secondary Users (SUs) to dynamically use the spectrum resource li-censed to Primary Users (PUs ), and significantly improves the efficiency of spectrum utilization and is viewed as a promising technology. In cognitive radio networks, the problem of power control is an important issue. In this paper, we mainly focus on the problem of power control for fading channels in cognitive radio networks. The spectrum sharing un-derlay scenario is considered, where SUs are al-lowed to coexist with PUs on the condition that the outage probability of PUs is below the maximum outage probability threshold limitation due to the interference caused by SUs. Moreover, besides the outage probability threshold which is defined to protect the performance of PUs, we also consider the maximum transmit power constraints for each SU. With such a setup, we emphasize the problem of power control to minimize the outage probability of each SU in fading channels. Then, based on the statistical information of the fading channel, the closed expression for outage probability is given in fading channels. The Dual-Iteration Power Control (DIPC) algorithm is also proposed to minimize the outage probability based on Perron-Frobenius theo-ry and gradient descent method under the constraint condition. Finally, simulation results are illustrated to demonstrate the performance of the proposed scheme.  相似文献   

12.
In this paper, we address the optimal power allocation problem for minimizing capacity outage probability in multiple time-scale parallel fading channels. Extending ideas from the work of Dey and Evans (2005), we derive the optimal power allocation scheme for parallel fading channels with fast Rayleigh fading, as a function of the slow fading gains. Numerical results are presented to demonstrate the outage performance of this scheme for lognormal slow fading on two parallel channels.  相似文献   

13.
为了降低合作通信系统中的误码率和中断概率,本文研究了多点中继合作通信系统.采用矩母函数(Moment Generating Function)分析方法,通过引入超几何函数,详尽推导出Rayleigh衰落信道下的平均符号错误率和中断率的精确表达式.通过蒙特卡洛仿真,验证了表达式的正确性,其性能优于单点中继合作通信系统.  相似文献   

14.
In this paper, we study the end-to-end outage probability performance of Amplify and Forward (AF) and Decode and Forward (DF) multi-hop wireless communication systems operating over independent but not necessarily identical \(\alpha -\mu \) fading channels. To this end, we derive an expression for the moment generating function of the reciprocal of the end-to-end signal-to-noise ratio, and then use this expression to evaluate the end-to-end outage probability of the AF system by numerically inverting the Laplace transform. We also derive an expression for the end-to-end outage probability of the DF system.  相似文献   

15.
For pt.I see ibid., vol.47, no.3, p.1083-1102 (2002). We study three capacity regions for fading broadcast channels and obtain their corresponding optimal resource allocation strategies: the ergodic (Shannon) capacity region, the zero-outage capacity region, and the capacity region with outage. In this paper, we derive the outage capacity regions of fading broadcast channels, assuming that both the transmitter and the receivers have perfect channel side information. These capacity regions and the associate optimal resource allocation policies are obtained for code division (CD) with and without successive decoding, for time division (TD), and for frequency division (FD). We show that in an M-user broadcast system, the outage capacity region is implicitly obtained by deriving the outage probability region for a given rate vector. Given the required rate of each user, we find a strategy which bounds the outage probability region for different spectrum-sharing techniques. The corresponding optimal power allocation scheme is a multiuser generalization of the threshold-decision rule for a single-user fading channel. Also discussed is a simpler minimum common outage probability problem under the assumption that the broadcast channel is either not used at all when fading is severe or used simultaneously for all users. Numerical results for the different outage capacity regions are obtained for the Nakagami-m (1960) fading model  相似文献   

16.
Orthogonal space-time block coding (STBC) is an open-loop transmit diversity scheme that decouples the multiple-input multiple-output (MIMO) channel, thereby reducing the space-time decoding into a scalar detection process. This characteristic of STBC makes it a powerful tool, achieving full diversity over MIMO fading channels, and requiring little computational cost for both the encoding and decoding processes. In this paper, we exploit the single-input single-output equivalency of STBC in order to analyze its performance over nonselective Nakagami fading channels in the presence of spatial fading correlation. More specifically, we derive exact closed-form expressions for the outage probability and ergodic capacity of STBC, when the latter is employed over spatially correlated MIMO Nakagami fading channels. Moreover, we derive the exact symbol error probability of coherent M-PSK and M-QAM, when these modulation schemes are used along with STBC over such fading channels. The derived formulae are then used to assess the robustness of STBC to spatial correlation by considering general MIMO correlation models and analyzing their effects on the outage probability, ergodic capacity, and symbol error probability achieved by STBC.  相似文献   

17.
We present a study on the outage probability of multi-hop wireless communication systems with multiple-input multiple-output (MIMO) link based on the transmit antenna selection and the maximal-ratio combining (MRC) at the receiver. A nonregenerative system (NS) is investigated with an ideal amplifying gain. MIMO channels are assumed in uncorrelated Rayleigh fading.We derive a moment generating function (MGF) of the reciprocal of the end-to-end signal-to-noise ratio (SNR) and obtain a closed-form approximation on the outage probability through the numerical inversion of a Laplace transform. Numerical results show that the presented outage is exactly matched with the outage probability when assuming the ideal relay gain. For more practical gains, the result is shown to be a lowerbound that gets tight at high average SNR as well as for a small number of hops and/or of antennas. We also compare the outage probabilities of nonregenerative MIMO relaying with a regenerative counterpart for multiple hops.  相似文献   

18.
In this paper, we investigate a multiple-input-multiple-output (MIMO) scheme combining transmit antenna selection and receiver maximal-ratio combining (the TAS/MRC scheme). In this scheme, a single transmit antenna, which maximizes the total received signal power at the receiver, is selected for uncoded transmission. The closed-form outage probability of the system with transmit antenna selection is presented. The bit error rate (BER) of the TAS/MRC scheme is derived for binary phase-shift keying (BPSK) in flat Rayleigh fading channels. The BER analysis demonstrates that the TAS/MRC scheme can achieve a full diversity order at high signal-to-noise ratios (SNRs), as if all the transmit antennas were used. The average SNR gain of the TAS/MRC is quantified and compared with those of uncoded receiver MRC and space-time block codes (STBCs). The analytical results are verified by simulation. It is shown that the TAS/MRC scheme outperforms some more complex space-time codes of the same spectral efficiency. The cost of the improved performance is a low-rate feedback channel. We also show that channel estimation errors based on pilot symbols have no impact on the diversity order over quasi-static fading channels.  相似文献   

19.
In this article, an exact closed-form expression is derived for outage probability of decode-and-forward (DF) cooperative communications over independent identically distributed Nakagami-m fading channels. Simulation results verify that the theoretical expressions for the outage probability are correct. The optimal power allocation based on the derived outage probability is also studied.  相似文献   

20.
Communication systems with multiple antennas operating over non-ergodic fading channels are gauged by means of the outage probability against a given communication rate, the solution to which is often expressed in terms of the incomplete gamma function. Practical situations, however, often require the inverse process, i.e. the determination of an optimum rate against a desired outage probability. The contribution of this report is the application of an asymptotic expression that enables the inverse function to be expressed in closed form  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号