首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers a flowshop‐scheduling problem with a waiting time constraint imposed to restrict the processing of the two operations of each job. If the second operation of a job cannot start within a specified waiting time after the completion of its first operation, then an extra processing time will be incurred for its second operation as a penalty. We first show that even a greatly restricted version of the problem is strongly ????‐hard. We then develop an O(n2) algorithm to determine the makespan of a processing sequence of the jobs.  相似文献   

2.
In this article, we study a single-machine scheduling problem in which the processing time of a job is a nonlinear function of its basic processing time and starting time. The objectives are to minimise the makespan, the sum of weighted completion times and the sum of the kth powers of completion times. We show that the makespan minimisation problem can be solved in polynomial time. However, the total completion time and the sum of the kth powers of completion times minimisation problems can be solved in polynomial time in some cases. Besides, some useful properties are also provided for the sum of weighted completion times problem under certain conditions.  相似文献   

3.
Scheduling a Single Server in a Two-machine Flow Shop   总被引:1,自引:0,他引:1  
We study the problem of scheduling a single server that processes n jobs in a two-machine flow shop environment. A machine dependent setup time is needed whenever the server switches from one machine to the other. The problem with a given job sequence is shown to be reducible to a single machine batching problem. This result enables several cases of the server scheduling problem to be solved in O(n log n) by known algorithms, namely, finding a schedule feasible with respect to a given set of deadlines, minimizing the maximum lateness and, if the job processing times are agreeable, minimizing the total completion time. Minimizing the total weighted completion time is shown to be NP-hard in the strong sense. Two pseudopolynomial dynamic programming algorithms are presented for minimizing the weighted number of late jobs. Minimizing the number of late jobs is proved to be NP-hard even if setup times are equal and there are two distinct due dates. This problem is solved in O(n 3) time when all job processing times on the first machine are equal, and it is solved in O(n 4) time when all processing times on the second machine are equal. Received November 20, 2001; revised October 18, 2002 Published online: January 16, 2003  相似文献   

4.
We consider two single machine scheduling problems with resource dependent release times that can be controlled by a non-increasing convex resource consumption function. In the first problem, the objective is to minimize the total resource consumption with a constraint on the sum of job completion times. We show that a recognition version of the problem is NP-complete. In the second problem, the objective is to minimize the weighted total resource consumption and sum of job completion times with an initial release time greater than the total processing times. We provide some optimality conditions and show that the problem is polynomially solvable.  相似文献   

5.
We consider a single machine scheduling problem with resource dependent release times that can be controlled by a non-increasing convex resource consumption function. The objective is to minimize the weighted total resource consumption and sum of job completion times with an initial release time greater than the total processing times. It is known that the problem is polynomially solvable in O(n4) with n the number of jobs.  相似文献   

6.
We study a supply chain scheduling problem in which n jobs have to be scheduled on a single machine and delivered to m customers in batches. Each job has a due date, a processing time and a lateness penalty (weight). To save batch-delivery costs, several jobs for the same customer can be delivered together in a batch, including late jobs. The completion time of each job in the same batch coincides with the batch completion time. A batch setup time has to be added before processing the first job in each batch. The objective is to find a schedule which minimizes the sum of the weighted number of late jobs and the delivery costs. We present a pseudo-polynomial algorithm for a restricted case, where late jobs are delivered separately, and show that it becomes polynomial for the special cases when jobs have equal weights and equal delivery costs or equal processing times and equal setup times. We convert the algorithm into an FPTAS and prove that the solution produced by it is near-optimal for the original general problem by performing a parametric analysis of its performance ratio.  相似文献   

7.
In a manufacturing system workers are involved in doing the same job or activity repeatedly. Hence, the workers start learning more about the job or activity. Because of the learning, the time to complete the job or activity starts decreasing, which is known as “learning effect”. In this paper, an exponential sum-of-actual-processing-time based learning effect is introduced into single-machine scheduling. By the exponential sum-of-actual-processing-time based learning effect, we mean that the processing time of a job is defined by an exponential function of the sum-of-the-actual-processing-time of the already processed jobs. Under the proposed learning model, we show that under a sufficient condition, the makespan minimization problem, the sum of the θth (θ > 0) power of completion times minimization problem, and some special cases of the total weighted completion time minimization problem and the maximum lateness minimization problem remain polynomially solvable.  相似文献   

8.
This study investigates the flexible job shop scheduling problem (FJSP) with new job insertion. FJSP with new job insertion includes two phases: initializing schedules and rescheduling after each new job insertion. Initializing schedules is the standard FJSP problem while rescheduling is an FJSP with different job start time and different machine start time. The time to do rescheduling is the same as the time of new job insertion. Four ensembles of heuristics are proposed for scheduling FJSP with new job insertion. The objectives are to minimize maximum completion time (makespan), to minimize the average of earliness and tardiness (E/T), to minimize maximum machine workload (Mworkload) and total machine workload (Tworkload). Extensive computational experiments are carried out on eight real instances from remanufacturing enterprise. The results and comparisons show the effectiveness of the proposed heuristics for solving FJSP with new job insertion.  相似文献   

9.
We consider the total weighted completion time scheduling problem for parallel identical machines and precedence constraints, P| prec|\sum w i C i . This important and broad class of problems is known to be NP-hard, even for restricted special cases, and the best known approximation algorithms have worst-case performance that is far from optimal. However, little is known about the experimental behavior of algorithms for the general problem. This paper represents the first attempt to describe and evaluate comprehensively a range of weighted completion time scheduling algorithms. We first describe a family of combinatorial scheduling algorithms that optimally solve the single-machine problem, and show that they can be used to achieve good performance for the multiple-machine problem. These algorithms are efficient and find schedules that are on average within 1.5\percent of optimal over a large synthetic benchmark consisting of trees, chains, and instances with no precedence constraints. We then present several ways to create feasible schedules from nonintegral solutions to a new linear programming relaxation for the multiple-machine problem. The best of these linear programming-based approaches finds schedules that are within 0.2\percent of optimal over our benchmark. Finally, we describe how the scheduling phase in profile-based program compilation can be expressed as a weighted completion time scheduling problem and apply our algorithms to a set of instances extracted from the SPECint95 compiler benchmark. For these instances with arbitrary precedence constraints, the best linear programming-based approach finds optimal solutions in 78\percent of cases. Our results demonstrate that careful experimentation can help lead the way to high quality algorithms, even for difficult optimization problems. Received October 30, 1998; revised March 28, 2001.  相似文献   

10.
In this paper, we investigate a time-dependent learning effect in a flowshop scheduling problem. We assume that the time-dependent learning effect of a job was a function of the total normal processing time of jobs scheduled before the job. The following objective functions are explored: the makespan, the total flowtime, the sum of weighted completion times, the sum of the kth power of completion times, and the maximum lateness. Some heuristic algorithms with worst-case analysis for the objective functions are given. Moreover, a polynomial algorithm is proposed for the special case with identical processing time on each machine and that with an increasing series of dominating machines, respectively. Finally, the computational results to evaluate the performance of the heuristics are provided.  相似文献   

11.
12.
We study the basic problem of preemptive scheduling of a stream of jobs on a single processor. Consider an on-line stream of jobs, and let the ith job arrive at time r(i) and have processing time p(i). If C(i) is the completion time of job i, then the flow time of i is C(i) − r(i) and the stretch of i is the ratio of its flow time to its processing time; that is, . Flow time measures the time that a job is in the system regardless of the service it requests; the stretch measure relies on the intuition that a job that requires a long service time must be prepared to wait longer than jobs that require small service times. We present the improved algorithmic results for the average stretch metric in preemptive uniprocessor scheduling. Our first result is an off-line polynomial-time approximation scheme (PTAS) for average stretch scheduling. This improves upon the 2-approximation achieved by the on-line algorithm srpt that always schedules a job with the shortest remaining processing time. In a recent work, Chekuri and Khanna (Proc. 34th Ann. Symp. Theory Comput., 297–305, 2002) have presented approximation algorithms for weighted flow time, which is a more general metric than average stretch; their result also yields a PTAS for average stretch. Our second set of results considers the impact of incomplete knowledge of job sizes on the performance of on-line scheduling algorithms. We show that a constant-factor competitive ratio for average stretch is achievable even if the processing times (or remaining processing times) of jobs are known only to within a constant factor of accuracy.  相似文献   

13.
We study the problem of scheduling n jobs on two identical parallel processors or machines where an optimal schedule is defined as one with the shortest total weighted flowtime (i.e., the sum of the weighted completion time of all jobs), among the set of schedules with minimum makespan (i.e., the completion time of the last job finished). We present a two phase non-linear Integer Programming formulation for its solution, admittedly not to be practical or useful in most cases, but theoretically interesting since it models the problem. Thus, as an alternative, we propose an optimization algorithm, for small problems, and a heuristic, for large problems, to find optimal or near optimal solutions. Furthermore, we perform a computational study to evaluate and compare the effectiveness of the two proposed methods.  相似文献   

14.
We consider the single-machine scheduling problem of minimizing the number of late jobs. We omit here one of the standard assumptions in scheduling theory, which is that the processing times are deterministic. In this scheduling environment, the completion times will be stochastic variables as well. Instead of looking at the expected number of on time jobs, we present a new model to deal with the stochastic completion times, which is based on using a chance constraint to define whether a job is on time or late: a job is on time if the probability that it is completed by the deterministic due date is at least equal to a certain given minimum success probability. We have studied this problem for four classes of stochastic processing times. The jobs in the first three classes have processing times that follow: (i) A gamma distribution with shape parameter p j and scale parameter β, where β is common to all jobs; (ii) A negative binomial distribution with parameters p j and r, where r is the same for each job; (iii) A normal distribution with parameters p j and σ j 2. The jobs in the fourth class have equally disturbed processing times, that is, the processing times consist of a deterministic part and a random component that is independently, identically distributed for each job. We show that the first two cases have a common characteristic that makes it possible to solve these problems in O(nlog n) time through the algorithm by Moore and Hodgson. To analyze the third and fourth problem we need the additional assumption that the due dates and the minimum success probabilities are agreeable. We show that under this assumption the third problem is -hard in the ordinary sense, whereas the fourth problem is solvable by Moore and Hodgson’s algorithm. We further indicate how the problem of maximizing the expected number of on time jobs (with respect to the standard definition) can be tackled if we add the constraint that the on time jobs are sequenced in a given order and when we require that the probability that a job is on time amounts to at least some given lower bound. Supported by EC Contract IST-1999-14186 (Project alcom-FT).  相似文献   

15.
In this paper, we introduce a single-machine scheduling problem with an exponentially time-dependent learning effect. The processing time of a job is assumed to be an exponential function of the total normal processing time of jobs already processed before it. For such a scheduling problem, we first provide the upper bound for the maximum lateness and for the total weighted completion time. Next, we show that problems with the following criteria: makespan, the total completion time, the total weighted completion time, the total earliness/tardiness penalties and the maximum lateness under some agreeable conditions, are polynomially solvable.  相似文献   

16.
We revisit the classic problem of preemptive scheduling on m uniformly related machines. In this problem, jobs can be arbitrarily split into parts, under the constraint that every job is processed completely, and that the parts of a job are not assigned to run in parallel on different machines. We study a new objective which is motivated by fairness, where the goal is to minimize the sum of the two maximal job completion times. We design a polynomial time algorithm for computing an optimal solution. The algorithm can act on any set of machine speeds and any set of input jobs. The algorithm has several cases, many of which are very different from algorithms for makespan minimization (algorithms that minimize the maximum completion time of any job), and from algorithms that minimize the total completion time of all jobs.  相似文献   

17.
We consider various single machine scheduling problems in which the processing time of a job depends either on its position in a processing sequence or on its start time. We focus on problems of minimizing the makespan or the sum of (weighted) completion times of the jobs. In many situations we show that the objective function is priority-generating, and therefore the corresponding scheduling problem under series-parallel precedence constraints is polynomially solvable. In other situations we provide counter-examples that show that the objective function is not priority-generating.  相似文献   

18.
The problem of scheduling jobs to minimise completion time variance (CTV) is a well-known problem in scheduling research. CTV is categorized as a non-regular performance measure and its value may decrease by increasing the job completion times. This objective is relevant in situations where providing uniform service to customers is important, and is in-line with just-in-time philosophy. The problem concerned in this paper is to schedule n jobs on two identical parallel machines to minimise CTV. We consider the unrestricted version of the problem. The problem is said to be restricted when a machine is not allowed to remain idle when jobs are available for processing. It may be necessary to delay the start of job processing on a machine in order to reduce the completion time deviations. This gives rise to the unrestricted version of the problem. We discuss several properties of an optimal schedule to the problem. In this paper, we develop a lower bound on CTV for a known partial schedule and propose a branch and bound algorithm to solve the problem. Optimal solutions are obtained and results are reported.  相似文献   

19.
This paper is about scheduling parallel jobs, i.e. which can be executed on more than one machine at the same time. Malleable jobs is a special class of parallel jobs. The number of machines a malleable job is executed on may change during its execution.In this work, we consider the NP-hard problem of scheduling malleable jobs to minimize the total weighted completion time (or mean weighted flow time). For this problem, we introduce the class of “ascending” schedules in which, for each job, the number of machines assigned to it cannot decrease over time while this job is being processed.We prove that, under a natural assumption on the processing time functions of jobs, the set of ascending schedules is dominant for the problem. This result can be used to reduce the search space while looking for an optimal solution.  相似文献   

20.
In a recent paper [Theoretical Computer Science 363, 257–265], He, Zhong and Gu considered the non-resumable case of the scheduling problem with a fixed non-availability interval under the non-resumable scenario. They proposed a polynomial time approximation scheme (PTAS) to minimize the total completion time.In this paper, we propose a fully polynomial-time approximation scheme to minimize the total weighted completion time. The FPTAS has O(n2/ε2) time complexity, where n is the number of jobs and ε is the required error bound. The proposed FPTAS outperforms all the previous approximation algorithms designed for this problem and its running time is strongly polynomial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号