首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new method was developed for the simultaneous determination of lidocaine, proline and lomefloxacin in human urine by capillary electrophoresis-electrochemiluminescence detection with Ru(bpy)3 2+. Conditions of the separation and detection were investigated and optimized. It was proved that 20 mM phosphate buffer at pH 6.7 could achieve the most favorable resolution, and the high sensitivity of detection was obtained by using the detection potential at 1.15 V and 5 mM Ru(bpy)3 2+–60 mM phosphate buffer at pH 7.6 in the detection reservoir. The detection limits were 0.02 μg mL−1 for lidocaine, 0.03 μg mL−1 for proline and 0.06 μg mL−1 for lomefloxacin. Relative standard deviations of the ECL intensity and the migration time were 3.5 and 1.1% for 6 μg mL−1 lidocaine, 3.2 and 1.0% for 6 μg mL−1 proline and 3.7 and 1.2% for 6 μg mL−1 lomefloxacin, respectively. A baseline separation for lidocaine, proline and lomefloxacin was achieved within 360 s. The developed method was successfully applied to determine the amounts of lidocaine, proline and lomefloxacin in human urine. The recovery and RSD were in the range of 93.3–97.2 and 3.8–4.9%, respectively.  相似文献   

2.
A simple reversed-phase high-performance liquid chromatographic (HPLC) method has been developed for the simultaneous determination of the antiepileptic drugs (AEDs) zonisamide (ZNS), primidone (PRI), lamotrigine (LTG), phenobarbital (PB), phenytoin (PHT), oxcarbazepine (OXC), and carbamazepine (CBZ) and two of their active metabolites, monohydroxycarbamazepine (MHD) and carbamazepine 10,11-epoxide (CBZE) in human plasma. Plasma (100 μL) was pretreated by deproteinization with 300 μL methanol containing 20 μg mL−1 propranolol hydrochloride as internal standard. HPLC was performed on a C8 column (4.6 mm × 250 mm; particle size 5 μm) with methanol–acetonitrile–0.1% trifluoroacetic acid, 235:120:645 (v/v), as mobile phase at a flow rate of 1.5 mL min−1. ZNS, OXC, and CBZ were monitored by UV detection at 235 nm, and PRI, LTG, MHD, PB, PHT, and CBZE by UV detection at 215 nm. Relationships between response and concentration were linear over the concentration ranges 1–80 μg mL−1 for ZNS, 5–50 μg mL−1 for PRI, 1–25 μg mL−1 for LTG, 1–50 μg mL−1 for MHD, 5–100 μg mL−1 for PB, 1–10 μg mL−1 for CBZE, 0.5–25 μg mL−1 for OXC, 1–50 μg mL−1 for PHT, and 1–25 μg mL−1 for CBZ. Intra-day and inter-day reproducibility were adequate (coefficients of variation were ≤11.6%) and absolute recovery ranged from 95.2 ± 6.13 to 107.7 ± 7.76% for all the analytes; for the IS recovery was 98.69 ± 1.12%. The method was proved to be accurate, reproducible, convenient, and suitable for therapeutic monitoring of the nine analytes.  相似文献   

3.
The quick separation and simultaneous determination of d-amphetamine and diphenhydramine in the quick-acting anti-motion capsules was investigated by capillary zone electrophoresis. The influence of different parameters (internal standard, injection modes, pH, concentration of the running buffer and applied voltage) was systematically studied. The two compounds could be well separated within 2.0 min in a 40.2 cm fused-silica capillary at a separation voltage of 20 kV in a 50 mM phosphate–12.5 mM borate buffer adjusted to pH 5.5. Correlation coefficients for calibration curves in the range 0.50–1.50 μg mL−1 for d-amphetamine and 2.75–8.25 μg mL−1 for diphenhydramine were higher than 0.999. The limits of detection of d-amphetamine and diphenhydramine were 10.0 and 5.5 ng mL−1 and the recoveries of the compounds in the QAAMC were 99.80 and 99.85%, respectively. The authors L. Zhang and Y. Chen equally contributed to this work.  相似文献   

4.
A simple, rapid, and precise reversed-phase high-performance liquid chromatographic method has been developed for simultaneous determination of losartan potassium, ramipril, and hydrochlorothiazide. The three drugs were separated on a 150 mm × 4.6 mm i.d., 5 μm particle, Cosmosil C18 column. The mobile phase was 0.025 m sodium perchlorate–acetonitrile, 62:38 (v/v), containing 0.1% heptanesulphonic acid, pH adjusted to 2.85 with orthophosphoric acid, at a flow rate of 1.0 mL min−1. UV detection was performed at 215 nm. The method was validated for linearity, accuracy, precision, and limit of quantitation. Linearity, accuracy, and precision were acceptable in the ranges 35–65 μg mL−1 for losartan, 1.75–3.25 μg mL−1 for ramipril, and 8.75–16.25 μg mL−1 for hydrochlorothiazide.  相似文献   

5.
An integrated solid-phase spectrophotometry–FIA method is proposed for simultaneous determination of the mixture of saccharin (1,2-benzisothiazol-3(2H)-one-1,1-dioxide; E-954) (SA) and aspartame (N-l-α-aspartyl-l-phenylalanine-1-methyl ester; E-951) (AS). The procedure is based on on-line preconcentration of AS on a C18 silica gel minicolumn and separation from SA, followed by measurement, at λ=210 nm, of the absorbance of SA which is transiently retained on the adsorbent Sephadex G-25 placed in the flow-through cell of a monochannel FIA setup using pH 3.0 orthophosphoric acid–dihydrogen phosphate buffer, 3.75×10–3 mol L−1, as carrier. Subsequent desorption of AS with methanol enables its determination at λ=205 nm. With a sampling frequency of 10 h−1, the applicable concentration range, the detection limit, and the relative standard deviation were from 1.0 to 200.0 μg mL−1, 0.30 μg mL−1, and 1.0% (80 μg mL−1, n=10), respectively, for SA and from 10.0 to 200.0 μg mL−1, 1.4 μg mL−1, and 1.6% (100 μg mL−1, n=10) for AS. The method was used to determine the amounts of aspartame and saccharin in sweets and drinks. Recovery was always between 99 and 101%. The method enabled satisfactory determination of blends of SA and AS in low-calorie and dietary products and the results were compared with those from an HPLC reference method.  相似文献   

6.
Summary Direct chiral-phase HPLC methods have been developed for the determination of flurbiprofen and its major metabolites, namely 4′-hydroxyflurbiprofen and 3′-hydroxy-4′-methoxyflurbiprofen, in biological fluids using a derivatized amylose chiral stationary phase (CSP; Chiral-pak AD). Quantification of all three analytes, both free and conjugated, in urine was carried out following liquid-liquid extraction using tandem ultraviolet (UV) and fluorescence detection. Determination of flurbiprofen and the 4′-hydroxy-metabolite in plasma utilized the same CSP but required modification in the mobile phase composition and sole use of fluorescence detection. The urine assay was linear (r>0.998) between 0.05–10 μg mL−1, 0.1–20 μg mL−1 and 0.01–2 μg mL−1 for the enantiomers of flurbiprofen, 4′-hydroxyflurbiprofen and 3′-hydroxy-4′-methoxyflurbiprofen respectively. The plasma assay was linear (r>0.997) between 0.1–6 μg mL−1 and 0.01–0.6 μg mL−1 for the enantiomers of flurbiprofen and 4′-hydroxyflurbiprofen respectively. Both assays, typically yielded within- and between-day imprecision and accuracy values less than 10% for the enantiomers of the different analytes. Initial volunteer studies suggest that the disposition of flurbiprofen displays modest enantioselectivity in humans.  相似文献   

7.
Simple, sensitive, and reproducible off-line solid-phase microextraction and liquid chromatography (SPME/LC) methods are described for the determination of seven anticonvulsants and tricyclic antidepressants in human plasma. Factorial design and simplex methodology were applied in the optimization of the SPME procedure for tricyclic antidepressants analyses. Important factors in the SPME efficiency are discussed, such as the fiber coatings (both lab-made and commercial), extraction time, pH, ionic strength, influence of plasma proteins, and desorption conditions. The development of the lab-made fiber coatings, namely, octadecylsilane, aminosilane, and polyurethane, are further described and applied to anticonvulsants analyses. The investigated plasmatic range for the evaluated anticonvulsants, using CW-TPR fiber, were the following: phenylethylmalonamide (3.00–40.0 μg mL−1), phenobarbital (5.00–40.0 μg mL−1), primidone (3.00–40.0 μg mL−1), carbamazepine and carbamazepine-epoxide (2.00–24.0 μg mL−1), phenytoin (2.00–40.0 μg mL−1), and lamotrigine (0.50–12.0 μg mL−1). The antidepressants’ linear plasmatic concentration ranged from 75.0 to 500 ng mL−1 for imipramine, amitriptyline, and desipramine, and from 50.0 to 500 ng mL−1 for nortriptyline, being in all cases, the limit of quantification represented by the lowest value. The precision (interassays) for all investigated drugs in plasma sample spiked with different concentrations of each analyte and submitted to the described procedures were lower than 15%. The off-line SPME/LC methodologies developed allow anticonvulsants and antidepressants analyses from therapeutic to toxic levels for therapeutic drug monitoring.  相似文献   

8.
Summary A simple and rapid liquid chromatographic method has been developed for the determination of therapeutic levels of piperacillin (I) and ceftazidime (II) in human plasma. Plasma and p-propionamidophenol (internal standard) were precipitated with methanol (I) or 20% trichloroacetic acid (II). The supernatant was analysed on a 5 μm Spherisorb ODS C18 column with acetonitrile-0.05 M phosphate buffer pH 3.8 as mobile phase and ultraviolet detection at 254 nm. The calibration graph was linear from 10 to 250 μg mL−1, for (I), and from 5 to 200 μg mL−1 for (II). Intra and inter-day CV did no exceed 2.29% for (I), and were 10.76–11.13%–2.00–5.62 for (II) at concentrations of 10 μg mL−1 and 250 μg mL−1.  相似文献   

9.
An on-line method, based on coupling dynamic ultrasonic extraction (DUE), continuously sampling the suspension of sample and solvent, high performance liquid chromatographic separation with diode array detection, has been developed for the determination of the flavonoids, including baicalin, baicalein and wogonin, from the root of Scutellaria baicalensis Georgi. Variables influencing the DUE were evaluated by orthogonal test. The extraction yields of baicalin, baicalein and wogonin in the roots of S. baicalensis Georgi obtained from five different cultivated areas are 73.8–131.5 μg mg−1 (RSD ≤ 6.24%), 6.8–15.9 μg mg−1 (RSD ≤ 5.36%) and 4.4–14.3 μg mg−1 (RSD ≤ 5.30%), respectively. The limits of detection for baicalin, baicalein and wogonin are 0.30, 0.37 and 0.41 μg mL−1, respectively. Linearity is from 0.55 to 109 μg mL−1 for baicalin, from 0.51 to 105 μg mL−1 for baicalein and from 0.53 to 102 μg mL−1 for wogonin. Compared with off-line continuous flow-DUE, the proposed method would be more convenient for the determination of the analytes and the rapid optimization of the extraction process. The extraction yields of flavonoids obtained by the proposed method are comparable with those obtained by dynamic microwave assisted extraction, static ultrasonic extraction and reflux extraction. The result indicated that the proposed method is suitable to determine the active components in Chinese herbal medicine.  相似文献   

10.
Tetracycline antibiotics (TCs) such as doxycycline (DOTC), chlortetracycline (CTC), oxytetracycline (OTC), and tetracycline (TC) react with Cu(II) in pH 3.5 BR buffer medium to form 1:1 cationic chelates, which further react with titan yellow to form 2:1 ion association complexes. These result in great enhancement of resonance Rayleigh scattering (RRS) and the appearance of new RRS spectra. The ion association complexes of DOTC, CTC, OTC, and TC have similar spectral characteristics and their maximum RRS wavelengths are all located at 464 nm. The quantitative determination ranges and the detection limits (3σ) of the four TCs are 0.037–4.8 μg mL−1 and 11.2 ng mL−1 for DOTC, 0.041–5.2 μg mL−1 and 12.4 ng mL−1 for CTC, 0.050–4.8 μg mL−1 and 15.1 ng mL−1 for TC, and 0.088–5.0 μg mL−1 and 26.3 ng mL−1 for OTC, respectively. The optimum reaction conditions, the effects of foreign substances, the structure of ternary complexes, and the reaction mechanism are discussed. A sensitive, rapid, and simple RRS method for the determination of DOTC has been developed.  相似文献   

11.
A sensitive and specific liquid chromatographic method with electrospray ionization mass spectrometry (LC–ESI-MS) has been developed and validated for identification and quantification of mitiglinide in human urine. A simple liquid–liquid extraction procedure was followed by separation on a C18 column with gradient elution, and detection using a single-quadrupole mass spectrometer in selected-ion-monitoring (SIM) mode. The method was tested using six different batches of urine. Linearity was established for the mitiglinide concentrations in the range 0.005–1.0 μg mL−1, with a coefficient of determination (r) of 0.9998 and good back-calculated accuracy and precision. Intra- and inter-day precision (as RSD, %) was below 10% and accuracy for mitiglinide ranged from 85 to 115%. The lower limit of quantification was reproducible at 0.002 μg mL−1 for 500 μL urine. The proposed method enables unambiguous identification and quantification of mitiglinide in pre-clinical and clinical studies.  相似文献   

12.
Red clover (Trifolium pratense L.) is an important forage plant that contains the isoflavones daidzein, genistein, formononetin, and biochanin A. These compounds have been studied lately due to their human health benefits. The aim of this study was to develop and validate an HPLC method with simplified sample preparation to quantify daidzein, genistein, formononetin and biochanin A simultaneously in red clover leaves. The validation showed that the method is specific, accurate, precise and robust, not to mention that the sample preparation is easier and faster than those described earlier. The response was linear over a range of 0.01–0.2 μg mL−1 for daidzein, 0.05–0.5 μg mL−1 for genistein, 4–40 μg mL−1 for formononetin and 2–20 μg mL−1 for biochanin A. The range of recoveries was 85.6–101.0%. The RSD for intra- and inter-day precision were <2.54 and <7.22%, respectively. Five populations of red clover, from the National Plant Germplasm System-USDA were analyzed and the content of daidzein, genistein, formononetin and biochanin A ranged from 7.87–91.31, 51.60–131.30, 6568.33–23461.82, to 2499.55–10337.33 μg g−1 of dried material, respectively.  相似文献   

13.
Protein can greatly enhance the fluorescence of curcumin (CU) in the presence of sodium dodecyl benzene sulfonate (SDBS). Experiments indicate that under the optimum conditions, the enhanced intensity of fluorescence is proportional to the concentration of proteins in the range of 0.0050–20.0 μg mL−1 for bovine serum albumin (BSA), 0.080–20.0 μg mL−1 for human serum albumin (HSA), and 0.040–28.0 μg mL−1 for egg albumin (EA). Their detection limits (S/N=3) are 1.4 ng mL−1, 20 ng mL−1, and 16 ng mL−1, respectively. The method has been satisfactorily used for the determination of proteins in actual samples. In comparison with most of fluorimetric methods, this method is quick and simple, has high sensitivity and good stability. The interaction mechanism is also studied.  相似文献   

14.
Summary A reversed-phase ion-pair chromatographic (RPIPC) method withN,N,N′, N′-ethylenediaminetetrakis(methylenephosphonic acid) (EDTMP) as coordinating agent has been developed for simultaneous separation and detection of Cu(II), Fe(III), and Pb(II) ions. Response is linearly dependent on amount of sample over the range 9.52–50.8 μg mL−1 for Cu(II), 8.31–41.8 μg mL−1 for Fe(III), and 37.3–51.8 μg mL−1 for Pb(II). The method has been applied successfully to an artificial mixed-ore sample.  相似文献   

15.
A rapid and simple procedure for the determination of antioxidants and preservatives in cosmetics has been developed utilizing solid-phase microextraction combined with GC–MS. A silica fiber coated with polyacrylate provided the highest extraction efficiency. Detection limits in the range from 0.4 to 8.5 ng mL−1 were obtained. Linearity is over a wide range from 1 to 2,000 ng mL−1 with a relative standard deviation under 16%. Cosmetic from a local supermarket were analysed for antioxidants and preservatives to demonstrate the effectiveness of the proposed method. The concentration of antioxidants and preservatives determined was 20–1,218 μg g−1 for methylparaben and 5–3,779 μg g−1 for propylparaben.  相似文献   

16.
Summary A simple, low-cost, sensitive and selective HPLC method was developed for the determination of phenazopyridine in human plasma. The method employs UV detection of phenazopyridine and of the internal Standard at 2 different wavelengths. Calibration curves were linear over a large dynamic range, i.e., within 0.05–10.0 μg mL−1 with limit of quantification of 0.05 μg mL−1, and a limit of detection of 0.01 μg mL−1.  相似文献   

17.
Simple and rapid spectrophotometric methods have been developed for the microdetermination of fluoxetine HCl. The proposed methods are based on the formation of ion-pair complexes between fluoxetine and bromophenol blue (BPB), bromothymol blue (BTB), bromocresol green (BCG), and bromocresol purple (BCP) which can be measured at optimum λmax. Optimization of reaction conditions was investigated. Beerșs law was obeyed in the concentration ranges of 0.5–8.0 μg mL−1, whereas optimum concentration as adopted from the Ringbom plots was 0.7–7.7 μg mL−1. The molar absorptivity, Sandell sensitivity, and detection limit were also calculated. The most optimal and sensitive method was developed using BCG. The correlation coefficient was 0.9988 (n = 6) with a relative standard deviation of 1.25, for six determinations of 4.0 μg mL−1. The proposed methods were successfully applied to the determination of fluoxetine hydrochloride in its dosage forms and in biological fluids (spiked plasma sample) using the standard addition technique.  相似文献   

18.
A rapid, specific reversed phase HPLC method has been developed for simultaneous determination of olanzapine and fluoxetine in their formulations. Chromatographic separation of these two pharmaceuticals was carried out on an Inertsil C18 reversed phase column (150 mm × 4.6 mm, 5 μm) with a 40:30:30 (v/v/v) mixture of 9.5 mM sodium dihydrogen phosphate (pH adjusted to 6.8 ± 0.1 with triethylamine), acetonitrile and methanol as mobile phase. The flow rate 1.2 mL min−1 and the analytes are monitored at 225 nm. Paroxetine was used as internal standard. The assay results were linear from 25 to 75 μg mL−1 for olanzapine (r 2 ≥ 0.995) and 100–300 μg mL−1 for fluoxetine (r 2 ≥ 0.995), showed intra- and inter-day precision less than 1.0%, and accuracy of 97.7–99.1% and 97.9–99.0%. LOQ was 0.005 and 0.001 μg mL−1 for olanzapine and fluoxetine, respectively. Separation was complete in less than 10 min. Validation of the method showed it to be robust, precise, accurate and linear over the range of analysis.  相似文献   

19.
A high-performance liquid chromatography–UV method for determining DCJW concentration in rat plasma was developed. The method described was applied to a pharmacokinetics study of intramuscular injection in rats. The plasma samples were deproteinized with acetonitrile in a one-step extraction. The HPLC assay was carried out using a VP-ODS column and the mobile phase consisting of acetonitrile–water (80:20, v/v) was used at a flow rate of 1.0 mL min−1 for the effective eluting DCJW. The detection of the analyte peak area was achieved by setting a UV detector at 314 nm with no interfering plasma peak. The method was fully validated with the following validation parameters: linearity range 0.06–10 μg mL−1 (r > 0.999); absolute recoveries of DCJW were 97.44–103.46% from rat plasma; limit of quantification, 0.06 μg mL−1 and limit of detection, 0.02 μg mL−1. The method was further used to determine the concentration–time profiles of DCJW in the rat plasma following intramuscular injection of DCJW solution at a dose of 1.2 mg kg−1. Maximum plasma concentration (C max) and area under the plasma concentration–time curve (AUC) for DCJW were 140.20 ng mL−1 and 2405.28 ng h mL−1.  相似文献   

20.
A simple, rapid and reproducible HPLC method was developed and validated for the simultaneous determination of olmesartan (OLM) medoxomil and hydrochlorothiazide (HCT) in combined tablets. Chromatography was carried out on a 4.6 mm I.D × 200 mm, 5 μm cyano column with methanol–10 mM phosphoric acid containing 0.1% triethylamine (pH 2.5, 50:50 v/v) at a flow rate of 1.0 mL min−1 and UV detector was set at 260 nm. Valsartan (VAL) was used as internal standard (IS). A linear response was observed in the range of 0.2–6 μg mL−1 (r 2 = 0.9998) for OLM and 0.1–4 μg mL−1 (r 2 = 0.9999) for HCT, respectively. The method showed good recoveries (99.56% for OLM and 99.48% for HCT) and the relative standard deviation (RSD) values for intra- and inter-day precision were 0.70–1.59 and 0.80–2.00% for OLM and 1.20–1.37 and 1.63–1.93% for HCT, respectively. The developed method was applied successfully for quality control assay of OLM and HCT in combined tablets and in vitro dissolution studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号