首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrafine strontium barium niobate (Sr0.3Ba0.7Nb2O6, SBN30) powders were prepared by urea method starting from a precursor solution constituting of Sr (NO3)2, Ba (NO3)2, NbF5, urea and polyvinyl alcohol (PVA) as surfactant. Their structural behavior and morphology were examined by means of X-ray diffractometry (XRD) and Scanning electron microscopy (SEM). The results showed that the SBN30 powders crystallized to a pure tetragonal phase at annealing temperatures as low as 750 °C. The average particle size of SBN powders subjected to 750 °C was of the order of 150–300 nm. With increasing calcination temperature,however, the average particle size of the calcined powders increased. The SBN30 ceramic prepared from urea method can be sintered at temperature as low as 1,225 °C. The transition temperature from the ferroelectric phase to the paraelectric phase and the relative dielectric permittivity of the SBN30 powder were less than the corresponding values of the bulk ceramic. The permittivity and loss tangent (tan δ) at room temperature (1 kHz) was found to be 930 and below 0.025.  相似文献   

2.
《Materials Letters》2001,47(1-2):7-10
Cubic perovskite-type barium stannate (BaSnO3) powders were successfully prepared under hydrothermal conditions. Hydrothermal treatment of a highly reactive co-precipitated stannic hydroxide gel and barium hydroxide resulted to form a well-crystallized single phase of barium stannate powder via an intermediate phase of BaSn(OH)6. The optimum hydrothermal conditions of 573 K for 120 s were found for the formation of pure phase of BaSnO3. The synthesized product had a fine microstructure, with a grain size of ∼7 μm. The formation of BaSnO3 strongly depends on the reaction temperature.  相似文献   

3.
The hydrothermal reactions of fibrous H2Ti4O9 particles with Ba(OH)2 solution in the presence of cationic surfactants of n-hexadecyltrimethylammonium hydroxide (HTMA-OH) and n-hexadecyltrimethylammonium bromide (HTMA-Br) were investigated in a temperature range of 150–250 °C. H2Ti4O9 phase with layered structure was transformed to BaTiO3 phase in the Ba(OH)2–(HTMA-OH) and the Ba(OH)2–(HTMA-Br) solutions, and partially transformed to anatase phase in the Ba2+-free HTMA-OH and HTMA-Br solutions by topotactic structural transformation reactions under the hydrothermal conditions. The cocoon-like BaTiO3 and titanium oxide particles were obtained after the hydrothermal reactions in the Ba(OH)2–(HTMA-OH) and HTMA-OH solution, respectively. These cocoon-like particles were formed by assembling the fibrous particles in the surfactant solutions.  相似文献   

4.
We have studied the properties of nanocrystalline ZrO2-Y2O3-CeO2-CoO-Al2O3 powders prepared via hydrothermal treatment of a mixture of coprecipitated hydroxides at 210°C. A number of general trends are identified in the variation of the properties of the synthesized powders during heat treatment at temperatures from 500 to 1200°C. Our results demonstrate that the addition of 0.3 mol % CoO to nanocrystalline ZrO2-based powders containing 1 to 5 mol % Al2O3 allows one to obtain composites with good sinterability at a reduced temperature (1200°C).  相似文献   

5.
Nanosized Ag2V4O11 powders have been prepared via the low-temperature molten salt method using LiNO3 as a reaction medium. The powders have been characterized by x-ray diffraction and transmission electron microscopy. The discharge properties of the powders have been assessed by the galvanostatic discharge test using CR2016 coin cells. The powder made at 300°C for 2 h is composed of nearly spherical particles about 40 nm in size. The discharge test shows that the powders prepared by the low-temperature molten salt method exhibit high discharge capacities.  相似文献   

6.
Uniform spindlelike Y(OH)3 nanorod bundles were successfully prepared for the first time via a simple hydrothermal method at 200 °C for 12 h with the presence of Na2H2EDTA · 2H2O (EDTA). Scanning electron microscope (SEM) images show that the obtained Y(OH)3 spindlelike nanorod bundles have a length of about 11 μm and a diameter of about 2 μm in the middle part. The nanorod bundles are composed of numerous nanorods, and all these nanorods are orientationally aligned and grow uniformly along the bundles. The individual nanorod is with typical width of about 100 nm, thickness of about 40 nm, and length longer than 1 μm. The effects of reaction temperature, reaction time, and the concentration of NaOH and EDTA on the sizes and morphologies of the products have been investigated. The possible formation mechanism of the nanorod bundles was suggested. Spindlelike Y2O3 nanorod bundles were obtained after thermal treatment of the as-obtained Y(OH)3 nanorod bundles at 700 °C for 4 h. X-ray powder diffraction (XRD) results demonstrate that the as-prepared Y(OH)3 and Y2O3 are attributed to hexagonal phase and cubic phase, respectively. Eu3+ doped Y2O3 nanorod bundles were also prepared and their photoluminescence (PL) properties were investigated.  相似文献   

7.
The formation behavior of CaCu3Ti4O12 (CCTO) had been investigated via solid state reaction from CaTiO3, CuO and TiO2 powders. In the temperature range from 750 to 1,200 °C, the reaction sequence was traced by XRD, and the microstructure evolution of calcined powders was also investigated by SEM. CCTO began to form owing to the reaction between CaTiO3, CuO and TiO2 at around 850 °C, and became the major phase at 1,000 °C. Finally, the single phase CCTO was obtained at 1,150 °C. However, CCTO was decomposed at CaTiO3, CuO and TiO2 when the temperature increased to 1,200 °C. In addition, no other intermediate phases occurred in the synthesized process. The formation behaviors indicated that CaTiO3 prevented the formation and growth of CCTO.  相似文献   

8.
Apatite-type La9.33(SiO4)6O2 powders have been prepared by urea-nitrates combustion at low temperature. Process parameters of combustion and characteristics of electrolyte were studied and optimized. Gelation time of precursor has been shortened distinctly by introducing an appropriate solvent system. Molar ratio of nitric acid to lanthanum oxide dependence of the nature of the phases has first been characterized. Well-crystallized La9.33(SiO4)6O2 powders with an average size of 30.5 nm were obtained at a calcining temperature as low as 800°C for 12h. Dense ceramic with a relative density of 96% was prepared by sintering the green compact of these nanopowders at 1400°C for 3 h. The sintering body exhibited a high ionic conductivity of 4.38 × 10−3 S/cm at 700°C.  相似文献   

9.
Nanocrystalline ytterbia powders have been synthesized using different precursors prepared by precipitation from nitrate solutions: ytterbium carbonates, oxalates, and hydroxides. The powders have been characterized by X-ray diffraction and scanning electron microscopy. The nature of the precursor has no effect on the crystallization temperature of ytterbia but influences its microstructure. The particles range in shape from spherical to platelike. The average crystallite size of the Yb2O3 powders is 20–25 nm. Raising the heat-treatment temperature from 600 to 1000°C increases the crystallite size to 33–46 nm. The highest thermal stability is offered by the ytterbia powders prepared through carbonate decomposition.  相似文献   

10.
A one-pot polymerization method using citric acid and glucose for the synthesis of nano-crystalline BaFe0.5Nb0.5O3 is described. Phase evolution and the development of the crystallite size during decomposition of the (Ba,Fe,Nb)-gel were examined up to 1100 °C. Calcination at 850 °C of the gel leads to a phase-pure nano-crystalline BaFe0.5Nb0.5O3 powder with a crystallite size of 28 nm. The shrinkage of compacted powders starts at 900 °C. Dense ceramic bodies (relative density ≥ 90%) can be obtained either after conventional sintering above 1250 °C for 1 h or after two-step sintering at 1200 °C. Depending on the sintering regime, the ceramics have average grain sizes between 0.3 and 52 µm. The optical band gap of the nano-sized powder is 2.75(4) eV and decreases to 2.59(2) eV after sintering. Magnetic measurements of ceramics reveal a Néel temperature of about 23 K. A weak spontaneous magnetization might be due to the presence of a secondary phase not detectable by XRD. Dielectric measurements show that the permittivity values increase with decreasing frequency and rising temperature. The highest permittivity values of 10.6 × 104 (RT, 1 kHz) were reached after sintering at 1350 °C for 1 h. Tan δ values of all samples show a maximum at 1–2 MHz at RT. The frequency dependence of the impedance can be well described using a single RC-circuit.  相似文献   

11.
The formation of solid solutions of the type [Ba(HOC2H4OH)4][Sn1−x Ge x (OC2H4O)3] as BaSn1−x /Ge x O3 precursor and the phase evolution during its thermal decomposition are described in this paper. The 1,2-ethanediolato complexes can be decomposed to nano-sized BaSn1−x /Ge x O3 preceramic powders. Samples with x = 0.05 consist of only a Ba(Sn,Ge)O3 phase, whereas powders with x = 0.15 and 0.25 show diffraction patterns of both the Ba(Sn,Ge)O3 and BaGeO3 phase. The sintering behaviour was investigated on powders with a BaGeO3 content of 5 and 15 mol%. These powders show a specific surface area of 15.4–15.9 m2/g and were obtained from calcination above 800 °C. The addition of BaGeO3 reduced the sintering temperature of the ceramics drastically. BaSn0.95Ge0.05O3 ceramics with a relative density of at least 90% can be obtained by sintering at 1150 °C for 1 h. The ceramic bodies reveal a fine microstructure with cubical-shaped grains between 0.25 and 0.6 μm. For dense ceramics, the sintering temperature could be reduced down to 1090 °C, when the soaking time was extended up to 10 h.  相似文献   

12.
Al-substituted M-type hexaferrite is a highly anisotropic ferromagnetic material. In the present study, the coprecipitation and the citric-combustion methods of synthesis for SrAl4Fe8O19 powders were explored and their microstructure, magnetic properties, and microwave absorptivity examined. X-ray diffraction (XRD), scanning electron microscopy (SEM), a vibrating sample magnetometer, and a vector network analyser were used to characterize the powders. The XRD analyses indicated that the pure SrAl4Fe8O19 powder was synthesized at 900°C and 1000°C for 3 h by coprecipitation, but only at 1000°C for the citric-combustion processes. The SEM analysis revealed that the coprecipitation process yielded a powder with a smaller particle size, near single-domain structure, uniform grain morphology, and smaller shape anisotropy than the citric-combustion process. The synthesis technique also significantly affected the magnetic properties and microwave-absorptivity. Conversely, calcining temperature and calcining time had less of an effect. The grain size was found to be a key factor affecting the property of the powder. The powders synthesized by coprecipitation method at calcining temperature of 900°C exhibited the largest magnetization, largest coercivity, and best microwave absorptivity.  相似文献   

13.
In this work, the effect of Co doping on the structural, vibrational, morphological, optical and magnetic behaviour of BaSnO3 nanostructures is reported. Pure and Co (1,3, and 5%)-doped barium stannate (BSO) nanostructures were prepared by conventional hydrothermal technique followed by calcination at 900 °C for 5 h. The single crystalline cubic phase was identified by XRD analysis and structural distortions associated with Co doping were evidenced by variation in microstarin and crystallite size. FTIR and Raman studies further confirm the structural quality of the prepared samples. FESEM analysis revealed the mixed morphology of prepared samples, and the chemical compositions of all the samples were analysed using EDAX studies. The absorption studies revealed the incorporation of dopant ions and their effect on the bandgap subsequently in samples. The presence of defects and paramagnetic centres in the samples were confirmed by PL and EPR analyses. Magnetization studies demonstrated that pure BSO exhibits characteristic diamagnetism at room temperature and the addition of Co into Ba–Sn–O lattice drives the F-centre exchange interactions which results in the ferromagnetic behaviour. Hence, the occurrence of diamagnetic to ferromagnetic transition at room temperature with addition of Co as a dopant was identified.  相似文献   

14.
Fine BaZrO3 and BaHfO3 powders have been prepared by a microwave-assisted hydrothermal (MWHT) process. The powders have been characterized by x-ray diffraction and scanning electron microscopy, and their particle size distribution has been assessed from dynamic light scattering data. The results indicate that microwave processing during hydrothermal synthesis notably reduces the average particle size of the resulting powder and ensures a narrower particle size distribution. BaHfO3 particles prepared under the optimal MWHT synthesis conditions are predominantly spherical in shape and uniform in size, with an average size (1.2 μm) a factor of 2.5 smaller in comparison with particles prepared by a conventional hydrothermal process (2.9 μm).  相似文献   

15.
Tetragonal BaTiO3 nanoparticles are synthesized via solvothermal route in an ethanol water mixture. Ba(OH)2·8H2O is used as Ba precursor and TiO2 (P25 Degussa ∼25 nm, 30% anatase, 70% rutile) is used as Ti precursor in the Ba : Ti molar ratio 2 : 1. Effect of temperature and time study on solvothermal synthesis of BaTiO3 revealed that a moderate reaction temperature i.e. 185°C and longer reaction time favour tetragonal phase stabilization. Dissolution–precipitation appears to be the transformation mechanism for the crystallization of BaTiO3 from particulate TiO2 precursor.  相似文献   

16.
Bulk materials of MgB2 have been prepared with the stoichiometry of MgB2(Al2O3) x (x = 0, 2, 5, 10 and 20% nano-Al2O3 powders), by using solid-state reaction route. All samples were sintered at 750 °C for 30 min in a calorimeter to monitor the sintering reaction process. It is found that the onset temperatures of reaction between Mg and B powders increase significantly with increasing the amount of Al2O3. However, the reaction time is shortened for the nano-Al2O3 powders can effectively activate the reaction as a catalyst. The critical transition temperature decreases from 38.5 to 31.6 K, and the corresponding temperature window becomes narrow (less than 2.6 K). Furthermore, the amount of MgO impurity was found to increase with the increase of Al2O3, which probably indicates that partial Mg was replaced by Al.  相似文献   

17.
水热法制备BaTiO3粉体   总被引:15,自引:0,他引:15  
水热法制备的陶瓷粉体结晶度高,团聚少,烧结活性闹,得到了越来越广泛的重视。本文报道了水热法制备BaTiO3粉体的研究结果,给出BaTiO3粉体晶粒组成、粒度和结晶形貌与反应温度、前驱物形式以及Ba、Ti摩尔比之间的关系,选择较高的反应温度,使用强碱性溶液以及较高m(Ba).m(Ti)比的前驱物,有利于钙钛矿型BaTiO3晶粒的形成。采用新制的Ti(OH)4胶体为前驱物,在Ba(OH)2水溶液水热反  相似文献   

18.
In the present work, we report a direct precipitation of nanocrystalline powders of alkaline-earth hydroxyapatites of the compositions, A10(PO4)6(OH)2 (A = Ca, Sr or Ba) from aqueous solutions containing Na3PO4 and MCl2 (M = Ca, Sr or Ba) at 150°C for 2 days and autogeneous pressure under hydrothermal conditions. The products were characterized by X-ray powder diffraction, transmission electron microscopy and scanning electron microscopy. The paper also discusses a convenient and economical hydrothermal route for the extraction of nanocrystalline calcium hydroxyapatite, from fish bone waste.  相似文献   

19.
Characteristics of BaTiO3 powders synthesized by hydrothermal process   总被引:2,自引:0,他引:2  
Monodisperse BaTiO3 powder was prepared by a hydrothermal process from a mixture of Ba(OH)2 and Ti(OH)4. In the process, the best synthesis conditions were a Ba(OH)2/Ti(OH)4 mole ratio of 1, the reaction temperature 180°C, which produced the cubic crystal structure of BaTiO3 with 0.3 m size. The effects of synthesis conditions and the dispersion stability of powder were investigated. The reaction kinetics was also discussed from the experimental results.  相似文献   

20.
Uniform and monodisperse ZnSn(OH)6 perfect octahedrons have been synthesized by a facile coprecipitation reaction process. The particle size of the as-prepared ZnSn(OH)6 octahedral structure can be readily controlled by adjusting the reaction temperature (T), and the side length of ZnSn(OH)6 octahedrons was tailored from 3 μm (40°C) to 4 μm (60°C) and 5 μm (80°C). The ethanol sensing properties of ZnSn(OH)6 octahedrons were carefully investigated. The gas sensing experimental data show that the sensor based on ZnSn(OH)6 (40°C) has good selectivity, fast response/recovery time and the highest response (Ra/Rg = 23.8) to 200 ppm ethanol at relatively low optimum operating temperature (200°C) compared to sensors based on ZnSn(OH)6 (60°C) and ZnSn(OH)6 (80°C), which might result from different specific surface areas. The study demonstrated that perfect octahedral ZnSn(OH)6 with controlled crystalline size and desirable sensing performance can be synthesized by a simple fabrication procedure, and the octahedral ZnSn(OH)6 could be a highly promising material for high-performance sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号