首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
《Water Policy》2001,3(1):41-46
Lebanon depends primarily, for its water resources on ground water that is deteriorating rapidly. The increased demand on water resources in Lebanon as a result of: progressive urbanization, socio-economic growth, development of agricultural and industrial activities will lead to critical water limitations factor by the year 2010. Consequently, other resources such as the availability of surface water in terms of quality and quantity is of major importance. The political instability in the country limited the development of a comprehensive data-base for surface water. The paper focuses on assessing the water quality of the Qaraaoun reservoir, an impoundment of the river Litani for multipurpose utilization. This would serve as a prototype for the development of comprehensive plans for optimal utilization of surface water sources in Lebanon, as a venue to meet the water needs of Lebanon. The Qaraaoun reservoir, which till now has limited utilization of hydroelectric power and agricultural activities, proved to posses other usage. A master plan for the management of the Qaraaoun reservoir, as a prototype for surface water, should address policy constrains relative to environmental, institutional and financial issues.  相似文献   

2.
《Water Policy》2001,3(2):143-163
The scarcity of available water resources in the Middle East (ME) along with the occurrence of severe drought during the last two years has stimulated interest in minimizing regional water shortages by developing new and additional water using non-conventional options including large scale brackish and sea water desalination and water import projects. After a regional review is conducted of available water resources and uses, water demand projections, potential water development options, sustainable water demand management, and non-conventional water development options, it was concluded that (1) although most low-cost conventional resources in the region have already been developed, further potential exists, but marginal costs will increase rapidly, (2) the least cost solution for short and medium term water development for the ME is water conservation through water demand management practices, and (3) regional cooperation is required on the long-term to meet the future water needs through the development of new and additional water using non-conventional options.  相似文献   

3.
ABSTRACT

Due to their efficiency, revitalized traditional techniques for irrigation management of scarce water resources have been suggested as a way to at least partially cope with the present water crises in the Middle East. A better irrigation management includes re-using treated wastewater in agriculture. Treated wastewater should also be used in industrial processes, thus contributing to a more efficient overall water management. However, the most important change leading to better water management is improving water efficiency in agricultural irrigation. Traditional water management techniques have an important role in many Middle East and North African (MENA) countries. Besides bringing more water to a thirsty population, they can also contribute to the societal awareness, and recognition of the great diversity of cultural and social values water has to human civilization.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR P. Hubert  相似文献   

4.
5.
ABSTRACT

In recent years there has been a surge in land investments, primarily in the African continent, but also in Asia and Latin America. This increase in land investment was driven by the food pricing crisis of 2007–2008. Land investors can be identified from a variety of sectors, with actors ranging from hedge funds to national companies. Many water-scarce countries in the Middle East and North Africa (MENA) are among these financiers, and primarily invest in Africa. Recognizing the potential for “outsourcing” their food security (and thereby also partly their water security), Middle Eastern countries such as Jordan, Qatar and the United Arab Emirates have invested in land for food production in Africa. The extent to which this is happening is still unclear, as many contracts are not yet official and the extent of the leases is vague. This paper investigates the land investments and acquisitions by Middle Eastern countries. It also seeks to analyse what effect, if any, these investments can have on the potential for conflict reduction and subsequent peacebuilding in the Middle East region as the activity removes pressure from transboundary water resources.

EDITOR D. Koutsoyiannis ASSOCIATE EDITOR K. Aggestam  相似文献   

6.
Abstract

This paper reviews current knowledge of the potential impacts of climate change on water resources in Africa and the possible limits, barriers or opportunities for adaptation to climate change in internationally-shared river basins. Africa faces significant challenges to water resources management in the form of high variability and regional scarcity, set within the context of generally weak institutional capacity. Management is further challenged by the transboundary nature of many of its river basins. Climate change, despite uncertainty about the detail of its impacts on water resources, is likely to exacerbate many of these challenges. River basins, and the riparian states that share them, differ in their capacities to adapt. Without appropriate cooperation adaptation may be limited and uneven. Further research to examine the factors and processes that are important for cooperation to lead to positive adaptation outcomes and the increased adaptive capacity of water management institutions is suggested.  相似文献   

7.
The Pn travel time relative residuals, in respect to a crustal model of the Aegean area, have been determined for 103 permanent seismological stations in southeastern Europe, western Turkey and the Middle East. The values of these residuals are considered to depend mainly on the crustal thickness beneath the seismological stations. Based on these values seven regions with different crustal thickness, varying between 31 Km and 42 Km, have been defined. The crust in these regions is continental. A region with very high negative residuals has been defined in the Middle East (Egypt, Israel, Lebanon). These negative residuals are attributed to different crustal structure of the eastern Mediterranean (oceanic crust with an extra thick sedimentary layer) and not the crustal thickness at the station sites.Independently from the interpretation, these Pn residuals can be used successfully to considerably improve (up to 2 Km) the determination of the earthquake foci locations.  相似文献   

8.
Over the past decades, a number of water sciences and management programs have been developed to better understand and manage the water cycles at multiple temporal and spatial scales for various purposes, such as ecohydrology,global hydrology, sociohydrology, supply management, demand management, and integrated water resources management(IWRM). At the same time, rapid advancements have also been taking place in tracing, mapping, remote sensing, machine learning, and modelling technologies in hydrological research. Despite those programs and advancements, a water crisis is intensifying globally. The missing link is effective interactions between the hydrological research and water resource management to support implementation of the UN Sustainable Development Goals(SDGs) at multiple spatial scales. Since the watershed is the natural unit for water resources management, watershed science offers the potential to bridge this missing link.This study first reviews the advances in hydrological research and water resources management, and then discusses issues and challenges facing the global water community. Subsequently, it describes the core components of watershed science:(1)hydrological analysis;(2) water-operation policies;(3) governance;(4) management and feedback. The framework takes into account water availability, water uses, and water quality; explicitly focuses on the storage, fluxes, and quality of the hydrological cycle; defines appropriate local water resource thresholds through incorporating the planetary boundary framework; and identifies specific actionable measures for water resources management. It provides a complementary approach to the existing water management programs in addressing the current global water crisis and achieving the UN SDGs.  相似文献   

9.
Abstract

Water availability is one of the most important factors for economic development in the Middle East. The Water Evaluation And Planning (WEAP) model was used to assess present and future water demand and supply in Syria till 2050. Nonconventional water resources, climate change, development, industrial growth, regional cooperation, and implementation of new water saving techniques/devices were considered important factors to include in the analysis using the WEAP model. Six scenarios were evaluated depending on the actual situation, climate change, best available technology, advanced technology, regional cooperation, and regional conflict. The results display a vital need for new water resources to balance the unmet water demands. Climate change will have a major effect on Syrian water resources; possible regional conflict will also to a major extent affect water balance. However, regional cooperation and using the best available technology can help in minimizing the gap between supply and demand.
EDITOR Z.W. Kundzewicz ASSOCIATE EDITOR not assigned  相似文献   

10.
Watershed services are the benefits people obtain from the flow of water through a watershed. While demand for such services is increasing in most parts of the world, supply is getting more insecure due to human impacts on ecosystems such as climate or land use change. Population and water management authorities therefore require information on the potential availability of watershed services in the future and the trade-offs involved.In this study, the Soil and Water Assessment Tool (SWAT) is used to model watershed service availability for future management and climate change scenarios in the East African Pangani Basin. In order to quantify actual “benefits”, SWAT2005 was slightly modified, calibrated and configured at the required spatial and temporal resolution so that simulated water resources and processes could be characterized based on their valuation by stakeholders and their accessibility. The calibrated model was then used to evaluate three management and three climate scenarios.The results show that by the year 2025, not primarily the physical availability of water, but access to water resources and efficiency of use represent the greatest challenges. Water to cover basic human needs is available at least 95% of time but must be made accessible to the population through investments in distribution infrastructure. Concerning the trade-off between agricultural use and hydropower production, there is virtually no potential for an increase in hydropower even if it is given priority. Agriculture will necessarily expand spatially as a result of population growth, and can even benefit from higher irrigation water availability per area unit, given improved irrigation efficiency and enforced regulation to ensure equitable distribution of available water. The decline in services from natural terrestrial ecosystems (e.g. charcoal, food), due to the expansion of agriculture, increases the vulnerability of residents who depend on such services mostly in times of drought. The expected impacts of climate change may contribute to an increase or decrease in watershed service availability, but are only marginal and much lower than management impacts up to the year 2025.  相似文献   

11.
The collaborative project Earthquake Model of the Middle East (EMME, 2010–2015) brought together scientists and engineers from the leading research institutions in the region and delivered state-of-the-art seismic hazard assessment covering Afghanistan, Armenia, Azerbaijan, Cyprus, Georgia, Iran, Iraq, Jordan, Lebanon, Palestine, Pakistan, Syria and Turkey. Their efforts have been materialized in the first homogenized seismic hazard model comprising earthquake catalogues, mapped active faults, strong motions databank, ground motion models and the estimated ground motion values for various intensity measure types and relevant return periods (e.g. 475–5000 years). The reference seismic hazard map of the Middle East, depicts the mean values of peak ground acceleration with a 10% chance of exceedance in 50 years, corresponding to a mean return period of 475 years. A full resolution poster is provided with this contribution.  相似文献   

12.
Although water resources managers speak of a water crisis in Africa, the management of ground water has to date not featured strongly in national and regional African water agendas. Examination of the physical environment of the continent and, in particular, the water resources in relation to the socioeconomic landscape and regional development challenges makes it clear that widely occurring, albeit largely low-yielding, ground water resources will be crucial in the achievement of water security and development. Ground water is important primarily in domestic water and sanitation services, but also for other local productive needs like community gardens, stock watering, and brick-making, all essential to secure a basic livelihood and thus to alleviate poverty. Despite the importance of small-scale farming in Africa, there is little information on the present and potential role of ground water in agriculture. In contrast to its socioeconomic and ecological importance, ground water has remained a poorly understood and managed resource. Widespread contamination of ground water resources is occurring, and the important environmental services of ground water are neglected. There appear to be critical shortcomings in the organizational framework and the building of institutional capacity for ground water. Addressing this challenge will require a much clearer understanding and articulation of ground water's role and contribution to national and regional development objectives and an integrated management framework, with top-down facilitation of local actions.  相似文献   

13.
The institutional evolution is often induced by some factors. This paper intends to analyze the affecting factors in integrated urban and rural water affairs management reform in China. The integrated urban and rural water affairs management reform is to restructure the governmental organizational setting in water management by forms of water affair bureau or re-designing functions of current water resources bureau to incorporate part or all functions of resources management, service regulation and environment management in water sector. The analyses selected some natural and socio-economic factors. The results point out that the integrated urban and rural water affairs management reform is a factor-induced institutional evolution. The factors promoting this reform include occasional drought events, higher central water investment percentage; but the data from the urban sector do not provide the support to the reform.  相似文献   

14.
The seasonal nature of Australia’s tropical rivers means that connected groundwater aquifers are an important source of both consumptive and non-consumptive water, particularly during the dry season. The management of these common pool groundwater resources is one of the predominant water issues facing northern Australia. A national program of water reform stipulates the expansion of water trading as a key instrument for water allocation. The effectiveness of new institutional arrangements such as water markets will be determined mostly by how well they coordinate with local environmental requirements, local institutions and local norms. This paper describes a novel application of combined field work, institutional analysis, experimental economics and agent-based modeling to the analysis of a potential water market in the Katherine region of the Northern Territory, Australia. The effectiveness of different versions of the policy instrument is assessed in light of local conditions. Instruments that enable personal relationships and local institutions and norms to play a role in water management are found to be more effective in terms of both farming income and environmental impact.  相似文献   

15.
Abstract

A semi-distributed hydrological model and reservoir optimization algorithm are used to evaluate the potential impacts of climate change on existing and proposed reservoirs in the Sonora River Basin, Mexico. Inter-annual climatic variability, a bimodal precipitation regime and climate change uncertainties present challenges to water resource management in the region. Hydrological assessments are conducted for three meteorological products during a historical period and a future climate change scenario. Historical (1990–2000) and future (2031–2040) projections were derived from a mesoscale model forced with boundary conditions from a general circulation model under a high emissions scenario. The results reveal significantly higher precipitation, reservoir inflows, elevations and releases in the future relative to historical simulations. Furthermore, hydrological seasonality might be altered with a shift toward earlier water supply during the North American monsoon. The proposed infrastructure would have a limited ability to ameliorate future conditions, with more benefits in a tributary with lower flood hazard. These projections of the impacts of climate change and its interaction with infrastructure should be of interest to water resources managers in arid and semi-arid regions.
Editor D. Koutsoyiannis  相似文献   

16.
Population explosion and its many associated effects (e.g. urbanization, water pollution, deforestation) have already caused enormous stress on the world’s fresh water resources and, in turn, environment, health, and economy. According to latest World Health Organization estimates, about 900 million people still lack access to safe drinking water, about 2.5 billion people lack access to proper sanitation, millions of people die every year from water-related disasters and diseases, and economic losses in the order of billions of dollars occur due to water-related disasters. With the global climate change anticipated to have threatening consequences on our water resources and environment both at the global level and at local/regional levels (e.g. increases in the number and magnitude of floods and droughts, increases in sea levels), a general assessment is that the future state of our water resources will be a lot worse than it is now. The facts that over 300 rivers around the world are being shared by two or more nation states and that there are already numerous conflicts in the planning, development, and management of water resources in these basins further complicate matters for future water resources planning. In view of these, any sincere effort towards proper management of our future water resources and resolving potential future water-related conflicts will need to overcome many challenges. These challenges are both biophysical science-related and human science-related. The biophysical science challenges include: identification of the actual causes of climate change, development of global climate models (GCMs) that can adequately incorporate these causes to generate dependable future climate projections at larger scales, formulation of appropriate techniques to downscale the GCM outputs to local conditions for hydrologic predictions, and reliable estimation of the associated uncertainties in all these. The human science challenges have social, political, economic, and environmental facets that often act in an interconnected manner; proper ‘communication’ of (or lack thereof) our climate-water ‘scientific’ research activities to fellow scientists and engineers, policy makers, economists, industrialists, farmers, and the public at large crucially contributes to these challenges. The present study is intended to review the current state of our water resources and the climate change problem and to detail the challenges in dealing with the potential impacts of climate change on our water resources.  相似文献   

17.
Abstract

Groundwater, possibly of fossil origin, is used for water supply in some arid regions where the replenishment of groundwater by precipitation is low. Numerical modelling is a helpful tool in the assessment of groundwater resources and analysis of future exploitation scenarios. To quantify the groundwater resources of the East Owienat area in the southwest of the Western Desert, Egypt, the present study assesses the groundwater resources management of the Nubian aquifer. Groundwater withdrawals have increased in this area, resulting in a disturbance of the aquifer’s natural equilibrium, and the large-scale and ongoing depletion of this critical water reserve. Negative impacts, such as a decline in water levels and increase in salinity, have been experienced. The methodology includes application of numerical groundwater modelling in steady and transient states under different measured and abstraction scenarios. The numerical simulation model developed was applied to assess the responses of the Nubian aquifer water level under different pumping scenarios during the next 30 years. Groundwater management scenarios are evaluated to find an optimal management solution to satisfy future needs. Based on analysis of three different development schemes that were formulated to predict the future response of the aquifer under long-term water stress, a gradual increase in groundwater pumping to 150% of present levels should be adopted for protection and better management of the aquifer. Similar techniques could be used to improve groundwater management in other parts of the country, as well as other similar arid regions.
Editor D. Koutsoyiannis; Associate editor X. Chen  相似文献   

18.
The predicted increase in mean global temperature due to climate change is expected to affect water availability and, in turn, cause both environmental and societal impacts. To understand the potential impact of climate change on future sustainable water resources, this paper outlines a methodology to quantify the effects of climate change on potential groundwater recharge (or hydrological excess water) for three locations in the north and south of Great Britain. Using results from a stochastic weather generator, actual evapotranspiration and potential groundwater recharge time‐series for the historic baseline 1961–1990 and for a future ‘high’ greenhouse gas emissions scenario for the 2020s, 2050s and 2080s time periods were simulated for Coltishall in East Anglia, Gatwick in southeast England and Paisley in west Scotland. Under the ‘high’ gas emissions scenario, results showed a decrease of 20% in potential groundwater recharge for Coltishall, 40% for Gatwick and 7% for Paisley by the end of this century. The persistence of dry periods is shown to increase for the three sites during the 2050s and 2080s. Gatwick presents the driest conditions, Coltishall the largest variability of wet and dry periods and Paisley little variability. For Paisley, the main effect of climate change is evident during the dry season (April–September), when the potential amount of hydrological excess water decreases by 88% during the 2080s. Overall, it is concluded that future climate may present a decrease in potential groundwater recharge that will increase stress on local and regional groundwater resources that are already under ecosystem and water supply pressures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
湖泊水情遥感研究进展   总被引:1,自引:0,他引:1  
宋春桥  詹鹏飞  马荣华 《湖泊科学》2020,32(5):1406-1420
湖泊作为最直接的淡水资源之一,在人类的生产、生活各方面都占据至关重要的地位.受到全球气候变化与人类活动的影响,湖泊正在发生急剧变化,因而有必要对其进行快速、准确的时空变化监测,从而为水资源管理与保护、未来气候变化预警提供依据.遥感技术的产生与发展为大范围、实时动态的湖泊变化监测提供了难得的契机,它克服了人类对湖泊实地考察的局限性.本文对现有国内外湖泊水情遥感监测技术与方法进行了综合梳理,主要综述了国内外在湖泊水域范围提取、湖泊水位提取、湖泊水量估算、流域水文过程等方面的遥感研究进展情况,重点总结了该领域近年来提出的新方法和新技术.最后,结合当前遥感技术的发展,对未来遥感在湖泊动态变化监测中的应用潜力和趋势进行了简要论述,并对多源遥感数据融合与云计算平台的结合在地表水体连续变化监测中的应用进行了展望.  相似文献   

20.
《Water Policy》2001,3(5):387-403
The paper analyses the water scarcity problems in Gujarat in Western India using definitions of water scarcity propounded by Falkenmark, and Raskin and others, and a more universal definition based on supply and demand. While a lion's share of the scarce water goes for irrigating cash crops at the cost of subsistence farming and rural drinking, the pricing of canal water and electricity used for groundwater pumping is highly inefficient and inequitable. To manage demands for water, the paper suggests the use of water market as the institutional arrangement for promoting economically efficient uses, along with rational pricing of canal water and electricity for encouraging conservation. The paper advocates policies that enable: reforms in the governance and management of water for decentralisation and local institutional development; and increased investment in the irrigation and power supply sector for technological innovations and improvements in infrastructure, which are the fountainhead of the demand management strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号