首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Congenital adrenal hyperplasia (CAH) is an autosomal recessive disease which is most often caused by a deficiency in steroid 21-hydroxylase. The disease is characterized by a range of impaired adrenal cortisol and aldosterone synthesis combined with an increased androgen synthesis. These metabolic abnormalities lead to an inability to conserve sodium and virilization of females. The most common mutation causing the severe form of CAH is a conversion of an A or C at nucleotide (nt) 656 to a G in the second intron of the steroid 21-hydroxylase gene (CYP21) causing aberrant splicing of mRNA. A couple was referred to our centre for preimplantation genetic diagnosis (PGD) for 21-hydroxylase deficiency in CAH. A PGD was set up to detect the nt656 A/C-->G mutation using fluorescent polymerase chain reaction (PCR) and subsequent restriction enzyme digestion and fragment analysis on an automated sequencer. Using DNA or single cells from the father, the normal allele could not be amplified. Non-amplification of the normal allele has been previously described in asymptomatic carriers, therefore the PCR was further developed using heterozygous lymphoblasts from the mother. The PCR was shown to be highly efficient (96% amplification), accurate (0% contamination) and reliable (0% allelic drop-out). The couple started PGD treatment and the second PGD cycle resulted in a twin pregnancy. The genotype of the fetuses was determined in our laboratory using chorionic villus sampling material using the method described here. Both fetuses were shown to be heterozygous carriers of the mutation, and two healthy girls were born.  相似文献   

2.
Patients with salt-wasting congenital adrenal hyperplasia (SW-CAH) most commonly carry an A-G transition at nucleotide 656 (nt 656 A→G), causing abnormal splicing of ex-ons 2 and 3 in CYP21, the gene encoding active steroid 21-hydroxylase. Affected infants are severely deficient in cortisol and aldo-sterone, and usually come to medical attention during the neonatal period. We report on 2 affected boys, homozygous for the nt 656 mutation, who thrived in early infancy, but suffered salt-wasting crises unusually late in infancy, at 3.5 and 5.5 months, respectively. Laboratory studies at presentation showed hyponatremia, hyperkalemia, dehydration, and acidosis; serum aldo-sterone was low in spite of markedly elevated plasma renin activity. Basal 17-hydroxyprogesterone levels were only moderately elevated, yet the stimulated levels were more typical of severe, classic CAH due to 21-hydroxylase deficiency. Genomic DNA from the patients was analyzed. Southern blot showed no major deletions or rearrangements. CYP21 -specific amplification by polymerase chain reaction, coupled with allele-specific hybridization using wild-type and mutant probes at each of 9 sites for recognized disease-causing mutations, revealed a single, homozygous mutation in each patient: nt 656 A→G. These results were confirmed by sequence analysis. We conclude that the common nt 656 A→G mutation is sometimes associated with delayed phenotypic expression of SW-CAH. We speculate that variable splicing of the mutant CYP21 may modify the clinical manifestations of this disease. © 1995 Wiley-Liss, Inc.  相似文献   

3.
CYP21 mutations and congenital adrenal hyperplasia   总被引:3,自引:0,他引:3  
Lee HH 《Clinical genetics》2001,59(5):293-301
Congenital adrenal hyperplasia (CAH) is a common autosomal recessive disorder caused mainly by defects in the steroid 21-hydroxylase (CYP21) gene. More than 90% of CAH cases are caused by mutations of the CYP21 gene on chromosome 6p21.3. The wide range of CAH phenotypes is associated with multiple mutations known to affect 21-hydroxylase enzyme activity. To date, 56 different CYP21 mutations have been reported, mostly point mutations, but small deletions or insertions have been described too, as well as complete gene deletions. Fifteen mutations, constituting 90-95% of alleles, are derived from intergenic recombination of DNA sequences between the CYP21 gene and the highly homologous CYP21P pseudogene, while the remaining are spontaneous mutations. A reliable and accurate detection of CYP21 mutations is not only important for clinical diagnosis, but also for carrier detection as there is a high variability in the basal level of 17-hydroxyprogesterone between normal and heterozygous individuals. Several strategies based on polymerase chain reaction (PCR)-driven amplification with allele-specific oligonucleotides to the CYP21 gene have been developed. It has been demonstrated that one reaction for PCR amplification of the CYP21 gene and the chimeric CYP21P/CYP21 gene using mixed primers in combination with nested PCR and single-strand conformation polymorphism is considered highly efficient and accurate for molecular diagnosis of CAH due to 21-hydroxylase deficiency.  相似文献   

4.
Congenital adrenal hyperplasia (CAH) is a common autosomal recessive disorder mainly caused by defects in the steroid 21-hydroxylase (CYP21) gene. A 9.3-kb fragment generated by NdeI and AseI digestion by Southern blot analysis indicated that a consequence of deletion of the C4-CYP21 repeat module was the production of a distinct chimeric CYP21P/CYP21 molecule. In the present study, we report a novel CYP21 genotype in two CAH families in which the gene appeared as 9.4- and 3.3-kb fragments by TaqI digestion, rather than as a chimeric gene. From the analysis of PCR amplification patterns and DNA sequencing, we found that there was a duplication of 111 bases from codons 21 to 57 inserted at codon 58 in exon 1 of the CYP21 gene. In addition, codon 21 in the repeated sequence changed from TGG to AGG. Furthermore, this novel CYP21 gene present in both CAH families showed no mutations at IVS2-12A/C>G, 707-714delGAGACTAC, and P30L. Interestingly, the 5' end region of these two CYP21 genes showed the sequence of the CYP21P gene at nucleotides (nt) -103, -110, -123, and thereafter. Our data suggest that these two CYP21 genes are caused by deletion of the CYP21P, XA, RP2, and C4B genes. Possibly, the additional 111-base duplicated coding sequence may be generated by multiple intergenic recombinations, while there seems to be no relationship with deletion of the CYP21P-C4B regions.  相似文献   

5.
We have designed a rapid and convenient strategy to determine nine of the most common mutations in the 21-hydroxylase gene (CYP21). The frequency of the mutations was investigated in 34 Japanese patients affected with congenital adrenal hyperplasia (CAH) caused by 21-hydroxylase deficiency. We characterized 82% of the CAH chromosomes. The most frequent mutations were a C/A to G substitution in intron 2 in the salt-wasting form of the disease and an I172N in the simple virilizing form. Three de novo mutations were found. Two homozygous mutations (S268T and N493S) were detected by direct sequencing of all exons of CYP21 in two siblings, who had a normal genotype at all positions screened. We successfully applied these methods for prenatal diagnosis in one family. These procedures proved to be sensitive and rapid for the detection of the most common known mutations in the CYP21 gene and may be useful for genetic screening. Received: March 29, 1999 / Accepted: May 11, 1999  相似文献   

6.
The majority of congenital adrenal hyperplasia (CAH) cases arise from mutations in the steroid 21-hydroxylase (CYP21) gene. Without reliance on HLA gene linkage analysis, we have developed primers for differential polymerase chain reaction (PCR) amplification of the CYP21 gene and the non-functional CYP21P gene. Using the amplification created restriction site (ACRS) approach for direct mutational detection, a secondary PCR was then performed using a panel of primers specific for each of the 11 known mutations associated with CAH. Subsequent restriction analysis allowed not only the detection but also the determination of the zygosity of the mutations analysed. Existing deletion of the CYP21 gene could also be detected. In the analysis of 20 independent chromosomes in 11 families of CAH patients in Taiwan, four CYP21 mutation types, besides deletion, were detected. Interestingly, in five different alleles, the CYP21P pseudogene contained some polymorphisms generally associated with the CYP21 gene. These results suggest gene conversion events that are occurring in both CYP21P and CYP21 genes. Our combined differential PCR-ACRS protocol is simple and direct and is applicable for prenatal diagnosis of CAH using chorionic villi or amniotic cells.  相似文献   

7.
Congenital adrenal hyperplasia (CAH) due to 21‐hydroxylase deficiency is caused by mutations in the gene CYP21 encoding the enzyme steroid 21‐hydroxylase. In addition to deletions, approximately 20 different point mutations have been reported, and still novel mutations are detected. This makes genetic diagnosis as well as carrier detection of 21‐hydroxylase deficiency a complicated matter. We developed a simple nonradioactive assay based on the polymerase chain reaction (PCR) in combination with denaturing gradient gel electrophoresis (DGGE) to screen for mutations in the CYP21 gene. DGGE allows a fast scanning of PCR‐amplified segments of genes for the presence or absence of any single base pair alterations. We have performed this technique on the coding sequence and intron‐exon junctions of CYP21. Our results emphasize that this procedure constitutes a fast and reliable approach when performing diagnosis of 21‐hydroxylase deficiency. Hum Mutat 13:385–389, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

8.
Congenital adrenal hyperplasia (CAH) is a common inborn error of steroidogenesis. The clinical spectrum of CAH ranges from the severe classical form, which can be fatal in the newborn, to simple virilizing forms or a milder non-classical form which is often not diagnosed until puberty. Recessive mutations in the autosomal gene encoding 21-hydroxylase (CYP21) are responsible for approximately 95% of CAH cases. Since CYP21 genotype is generally predictive of the presence and severity of the disorder, accurate CYP21 genotyping is of clear medical significance. Determining the CYP21 genotype of an individual, using standard methods, is difficult due to the presence of a nearly identical pseudogene (CYP21P) in close proximity to the functional gene. To address the need for a comprehensive test for mutations in the CYP21 gene, we developed a multiplexed peptide mass signature genotyping (PMSG) assay and applied the assay to 151 DNA samples. CAH patients had been previously characterized for the 10 most common mutations. The PMSG assay detected all common mutations; in addition it identified six known rare mutations and also discovered four new mutations (two frameshifts in the first half of the gene, P42fs and S171fs, and two point mutations, H365Y and R479L). This assay has the potential to provide high-throughput, cost-effective analysis of the CYP21 gene to detect known mutations and identify novel variants in samples obtained from patients with CAH, individuals suspected to have CAH, and heterozygous carriers.  相似文献   

9.
Congenital adrenal hyperplasia (CAH) is a common autosomal recessive disorder mainly caused by defects in the steroid 21-hydroxylase gene (CYP21). In most cases, this defect is the result of gene conversion events between the functional CYP21 gene and the adjacent inactive pseudogene (CYP21P). Previous screening for mutations of 21-hydroxylase gene in 51 unrelated Tunisian CAH patients revealed 4 novel mutations that have not been reported to occur in the CYP21P pseudogene. The present paper describes the fifth new small 13-bp deletion in exon 1 found after sequencing the CYP21 gene of a Tunisian patient suffering from the salt-wasting form of CAH. The patient is a girl born to consanguineous parents; she is homozygous for a novel deletion. The 13-bp deletion causes a stop codon at amino acid 47, which is likely to result in an enzyme with no activity. Both parents are heterozygous for the small deletion as confirmed by nested PCR method. This novel mutation has not been reported to occur in the CYP21P pseudogene, indicating a casual mutagenic event rather than a conversion one.  相似文献   

10.
Testicular adrenal rest tumor (TART) is one of the important complications that can cause infertility in male patients with congenital adrenal hyperplasia (CAH) and should therefore be diagnosed and treated at an early age. The factors that result in TART in CAH have not been completely understood. The aim of this study is to evaluate the genotype-phenotype correlation in CAH patients with TART.MethodAmong 230 malepatients with CAH who were followed upwith regular scrotal ultrasonography in 11 different centers in Turkey, 40 patients who developed TARTand whose CAH diagnosis was confirmed by genetic testing were included in this study. Different approaches and methods were used for genotype analysis in this multicenter study. A few centers first screened the patients for the ten most common mutations in CYP21A2 and performed Sanger sequencing for the remaining regions only if these prior results were inconclusive while the majority of the departments adopted Sanger sequencing for the whole coding regions and exon-intron boundaries as the primary molecular diagnostic approach for patients with either CYP21A2 orCYP11B1 deficiency. The age of CAH diagnosis and TART diagnosis, type of CAH, and identified mutations were recorded.ResultsTART was detected in 17.4% of the cohort [24 patients with salt-wasting (SW) type, four simple virilizing type, and one with nonclassical type with 21-hydroxylase (CYP21A2) deficiency and 11 patients with 11-beta hydroxylase (CYP11B1) deficiency]. The youngest patients with TART presenting with CYP11B1 and CYP21A2 deficiency were of 2 and 4 years, respectively. Eight different pathogenic variants in CYP21A2were identified. The most common genotypes were c.293-13C>G/c.293-13C>G (31%) followed by c.955C>T/c.955C>T(27.6%) and c.1069C>T/c.1069C>T (17.2%). Seven different pathogenic variants were identified in CYP11B1. The most common mutation in CYP11B1 in our study was c.896T>C (p.Leu299Pro).ConclusionWe found that 83% TART patients were affected with SW typeCYP21A2 deficiency,and the frequent mutations detected were c.955C>T (p.Gln319Ter), c.293-13C>G in CYP21A2 and c.896T>C (p.Leu299Pro) inCYP11B1. Patients with CYP11B1 deficiency may develop TART at an earlier age. This study that examined the genotype–phenotype correlation in TART may benefit further investigations in larger series.  相似文献   

11.
Congenital adrenal hyperplasia (CAH) is a common autosomal recessive disorder which causes more than 90% of CAH cases due to defects in the steroid 21-hydroxylase gene (CYP21A2). The frequency of large mutations was determined in 200 ethnic Chinese (i.e., Taiwanese) CAH patients belonging to 200 families with different clinical forms of CYP21A2 deficiency over 10 years of molecular diagnoses. For a large-gene deletion (or conversion) and the CYP21A2 deletion identification, a PCR product covering the TNXB gene and the 5′-end of the CYP21A2 gene with TaqI endonuclease digestion was analyzed by electrophoresis on agarose gels. For CYP21A2 mutational analysis, secondary PCR amplification of the amplification-created restriction site method was applied. From the results of the analysis, we found that large-gene deletions (or conversions) occurred in 7.5% of the alleles including three different types of the chimeric CYP21A1P/CYP21A2 genes and the haplotype of IVS2-12A/C>G in combination with the 707-714del mutation (without the P30L mutation). The CYP21A2 deletion occurred in 2.0% of the alleles which contained three types of the chimeric TNXA/TNXB genes with two novel ones. We concluded that the CYP21A2 deletion in the ethnic Chinese (Taiwanese) patients exhibits a low occurrence, with the haplotype of the IVS2-12A/C>G in combination with the 707-714del mutation (without the P30L mutation) being prevalent among large gene deletions or conversions.  相似文献   

12.
The major cause of congenital adrenal hyperplasia (CAH), a common recessive genetic disease, is the deficiency of steroid 21-hydroxylase (21OH), a microsomal enzyme encoded by the CYP21 gene. Although several CAH causing mutations have been identified in the CYP21 gene of patients with 21OH deficiency, genotyping of the 21OH locus is quite complex because of the high frequency of gene conversion and the presence of multiple mutations on single CAH alleles. In order to perform the complete characterisation of the CYP21 gene coding region more simply, we developed a highly sensitive, non-radioactive method allowing DNA single strand conformation polymorphism (DNA-SSCP) analysis. This method was applied to the characterisation of all the exons and intron-exon junctions of the CYP21 gene in five patients affected by the simple virilising form and one affected by the salt wasting form. In all samples showing SSCP signals, direct sequence analysis showed the presence of more than one single sequence variant. In particular, four mutations which are already known to cause the disease, 16 polymorphisms, and one newly identified C to T transition at position 849 were detected. A random sequence analysis, performed on 31 out of 81 exons showing a normal SSCP pattern, shows the method to be highly sensitive: no sequence variant was detected, thus confirming the validity of this non-radioactive DNA-SSCP analysis in characterising the CYP21 gene in patients with steroid 21OH deficiency. Notwithstanding the complete characterisation of all exons and exon/intron junctions of the CYP21 gene, no complete genotype/phenotype correlation was found in the panel of patients analysed, thus suggesting that characterisation of CAH alleles must be extended to outside the coding region of the CYP21 gene, most probably into the promoter region.  相似文献   

13.
先天性肾上腺皮质增生症(Congenital adrenal hyperplasia,CAH)属于常见常染色体隐性遗传病,有着广泛的临床表现。CYP21A2基因是先天性肾上腺皮质增生症的致病基因,90%-95%的21-羟化酶缺乏症患者在CYP21A2基因上存在有害突变。了解CYP21A2基因编码区的常见突变谱和突变热点,主要包括基因的点突变、小缺失、小插入和完全重组等,同时分析基因型与表现型的关系,有着重要的意义。本研究在阐述2-羟化酶缺乏症的分子基础上,就近几年国内外21-羟化酶缺乏症相关内容进行简要综述。  相似文献   

14.
Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21OHD) occurs worldwide. The most common mutations in the CYP21A2 gene in 716 unrelated patients were analyzed and the mutations were grouped by ethnicity, as defined through self-declaration corroborated by review of pedigrees extending to two or three generations. Prevalent allelic mutations and genotypes were found to vary significantly among ethnic groups, and the predominance of the prevalent mutations and genotypes in several of these populations was significant. There are ethnic-specific mutations in the CYP21A2 gene. A large deletion is prevalent in the Anglo-Saxons; a V281L (1685 G to T) mutation is prevalent in Ashkenazi Jews; an R356W (2109 G to A) mutation is prevalent in the Croatians; an IVS2 AS -13 (A/C to G) mutation is prevalent in the Iranians and Yupik-speaking Eskimos of Western Alaska; and a Q318X (1994 C to T) mutation is prevalent in East Indians. Genotype/phenotype non-correlation was seen when at least one IVS2 AS -13 (A/C to G) mutation in the CYP21A2 gene was present.  相似文献   

15.
Congenital adrenal hyperplasia (CAH) is a common autosomal recessive disorder mainly caused by defects in the steroid 21-hydroxylase (CYP21) gene. For reliable and accurate mutation detection in the CYP21 gene it is important to separate the CYP21 gene from the highly homologous CYP21P pseudogene. For this, several different strategies have been developed. In the analysis of the common eight nucleotide deletion at codon 110-112, a strategy using the TaqI restriction enzyme was first applied. In one family, the results showed discordance between parents and offspring. The use of microsatellite markers flanking the genuine CYP21 gene did not lead to a correct assignment. The problem was finally resolved by using differential PCR amplification for generating a CYP21-specific template. It was concluded that incomplete TaqI digestion, although not visible on an agarose gel, allowed the amplification of the CYP21P pseudogene, thus leading to a false positive diagnosis. Therefore, we recommend the use of direct gene-specific primers for the essential step in the molecular diagnosis of congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency.  相似文献   

16.
Congenital adrenal hyperplasia (CAH) is a common autosomal recessive disease with a wide range of clinical manifestation. In 90‐95% of the cases it is caused by 21‐hydroxylase deficiency (OMIM #201910) due to mutations of the CYP21 gene (GDB Accession #M12792). In most cases the CYP21‐inactivating point mutations are transferred by apparent gene conversions from CYP21P to CYP21. In only a few cases point mutations have been described, which are not present in the pseudogene. Using Southern blot analysis and DNA sequencing we have identified a novel mutation (141delT) of the CYP21 gene in a patient suffering from the salt wasting form of CAH. This results in a premature termination of a truncated protein at amino acid position 51 (L51X), which is likely to result in an enzyme with no activity. This novel mutation has not been reported to occur in the CYP21P alleles and it was not found in the CYP21P alleles in this CAH family. Hum Mutat 14:90–91, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

17.
The frequency of 12 different mutations of the steroid 21-hydroxylase gene (CYP21) was investigated in 129 French patients affected by congenital adrenal hyperplasia (CAH) due to steroid 21-hydroxylase deficiency. Eighty-nine percent of the CAH chromosomes were characterized. The most frequent mutations were a C-G substitution in intron 2, the deletion of the CYP21 gene and a T-A substitution in exon 4 in the severe form of the disease, and a G-T substitution in exon 7 in the nonclassic form. The correlation between the genotypes and the clinical forms of the disease showed marked variation in the phenotype from a single genotype, suggesting that individual variation and undetected additional mutations on the same CAH chromosome accounted for the phenotype. In 65 informative meioses of CAH families, no de novo mutation was found. © Wiley-Liss, Inc.  相似文献   

18.
Congenital adrenal hyperplasia (CAH) is a common autosomal recessive disorder mainly caused by defects in the steroid 21-hydroxylase (CYP21) gene. More than 90% of CAH cases are caused by mutations of the CYP21 gene. Approximately 75% of the defective CYP21 genes are generated through intergenic recombination, termed "apparent gene conversion," from the neighboring CYP21Ppseudogene. A chimeric CYP21P/CYP21gene with its 5' end corresponding to CYP21P and 3' end corresponding to CYP21 has been identified. This type of gene is nonfunctional because it produces a truncated protein. We found two distinct chimeric genes in CAH patients. Both genes had a sequence with -300 nucleotides of the 5' head as the CYP21P gene. The coding region consisted of a fusion molecule with the CYP21P gene in two different regions. One of the junctions was located in the chi-like sequence of GCTGGGC in the third intron and the other was in the minisatellite consensus TGGCAGGAGG of exon 5 of the CYP21P gene. In addition, analysis of restriction fragment length polymorphism for these two 3.3-kb chimeric molecules showed that these sequences arose as a consequence of unequal crossover between the CYP21Pand CYP21 genes. It is plausible that both consensus sequences are responsible for the gene conversion of these two chimeric genes.  相似文献   

19.
Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders of adrenal steroidogenesis. Disorders in steroid 21‐hydroxylation account for over 95% of patients with CAH. Clinically, the 21‐hydroxylase deficiency has been classified in a broad spectrum of clinical forms, ranging from severe or classical, to mild late onset or non‐classical. Known allelic variants in the disease causing CYP21A2 gene are spread among different sources. Until recently, most variants reported have been identified in the clinical setting, which presumably bias described variants to pathogenic ones, as those found in the CYPAlleles database. Nevertheless, a large number of variants are being described in massive genome projects, many of which are found in dbSNP, but lack functional implications and/or their phenotypic effect. In this work, we gathered a total of 1,340 GVs in the CYP21A2 gene, from which 899 variants were unique and 230 have an effect on human health, and compiled all this information in an integrated database. We also connected CYP21A2 sequence information to phenotypic effects for all available mutations, including double mutants in cis. Data compiled in the present work could help physicians in the genetic counseling of families affected with 21‐hydroxylase deficiency.  相似文献   

20.
Steroid 21‐hydroxylase deficiency is the major cause of congenital adrenal hyperplasia (CAH). CAH due to 21‐hydroxylase deficiency is divided into three classes: salt‐wasting (classical), non‐classical and simple virilizing, reflecting different degrees of clinical severity. Using polymerase chain reaction (PCR) and allele‐specific oligonucleotide hybridisation (ASO), we screened the DNA of 62 Caucasian CAH families (heterozygous parents and children) for 14 different and frequently‐found CYP21‐mutations (HGMD). Of the 62 patients (21 males, 41 females), 26 females and 11 males had the classical or salt‐wasting form, 3 females and 1 male had the non‐classical form and 14 females and 7 males had simple virilizing CAH. More than 60% of the patients were compound‐heterozygous. We found the mutations on 110 alleles (out of 124 alleles). There were 30 CYP21 gene deletions/conversions, 3 substitutions (P30L) in exon 1, 30 splice mutations (c.93‐13A/C>G) in intron 2, 26 point mutations (I172N) in exon 4, one cluster of mutations (I236N, V237E, M239K) in exon 6, 8 mutations (V281L and 1760‐1761insT) in exon 7, and 8 nonsense (Q318X) and 4 missense (R356W) mutations in exon 8. Our study supports the case for using this rapid technique for CAH‐family screening as long as alleles from both affected patients and parents are screened in parallel. Hum Mutat 13:505, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号