首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Root tips of monocotyledons were soaked 2.5-3.0 hours at 25-27° C. in saturated aqueous coumarin solution and stained in a mixture of N HC 1 and 2% aceto-orcein (1:9 by volume) 3-4 seconds over a flame. They were then squashed in 1% orcein under a cover glass, the excess stain blotted and the cover sealed. Preparations could be kept about one week. Good chromosome morphology was secured.  相似文献   

2.
3.
Recent work has revealed random chromosome pairing and assortment in Saccharum spontaneum L., the most widely distributed, and morphologically and cytologically variable of the species of Saccharum. This conclusion was based on the analysis of a segregating population from across between S. spontaneum SES 208 and a spontaneously-doubled haploid of itself, derived from anther culture. To determine whether polysomic inheritance is common in Saccharum and whether it is observed in a typical biparental cross, we studied chromosome pairing and assortment in 44 progeny of a cross between euploid, meiotically regular, 2n=80 forms of Saccharum officinarum LA Purple and Saccharum robustum Mol 5829. Papuan 2n=80 forms of S. robustum have been suggested as the immediate progenitor species for cultivated sugarcane (S. officinarum). A total of 738 loci in LA Purple and 720 loci in Mol 5829 were amplified and typed in the progeny by arbitrarily primed PCR using 45 primers. Fifty and 33 single-dose polymorphisms were identified in the S. officinarum and S. robustum genomes, respectively ( 2 at 98%). Linkage analysis of single-dose polymorphisms in both genomes revealed linkages in repulsion and coupling phases. In the S. officinarum genome, a map hypothesis gave 7 linkage groups with 17 linked and 33 unlinked markers. Four of 13 pairwise linkages were in repulsion phase and 9 were in coupling phase. In the S. robustum genome, a map hypothesis gave 5 linkage groups, defined by 12 markers, with 21 markers unlinked, and 2 of 9 pairwise linkages were in repulsion phase. Therefore, complete polysomic inheritance was not observed in either species, suggesting that chromosomal behavior is different from that observed by linkage analysis of over 500 markers in the S. spontaneum map. Implications of this finding for evolution and breeding are discussed.  相似文献   

4.
The karyotype of the marsupial frog Gastrotheca riobambae is characterized by exceptionally highly differentiated XY/XX sex chromosomes. The 18S and 28S ribosomal RNA genes were found only in the nucleolus organizer region (NOR) of the X chromosome by in situ hybridization, silver staining and mithramycin banding. This amphibian species therefore exhibits a sex-specific difference in the number of ribosomal RNA genes of about 2()1(). This constitutes an extremely rare situation in the karyotype of vertebrates. Examination of various somatic tissues from female animals showed that the NORs on both X chromosomes are always active. The results are discussed in relation to the apparent absence of dosage compensation for sexlinked genes in the Amphibia.  相似文献   

5.
The chromosomes of the South American marsupial frogs Gastrotheca fissipes, G. ovifera, G. walkeri and Flectonotus pygmaeus were analyzed by means of conventional and various banding techniques. The karyotypes of G. ovifera and G. walkeri are characterized by highly differentiated XY/XX sex chromosomes. Whereas the X chromosomes and autosomes contain large amounts of constitutive heterochromatin, extremely little heterochromatin is located in the Y chromosomes. This is in contrast to all previously known amphibian Y chromosomes and the Y chromosomes of most other vertebrates. In the male meiosis of G. walkeri, the euchromatic segments of the heteromorphic XY chromosomes show the same pairing configuration as the autosomal bivalents. The karyotype of F. pygmaeus is remarkable for the unique presence of telocentric chromosomes and the high frequency of interstitially located chiasmata in the meiotic bivalents. The evolution of the karyotypes and sex chromosomes, the structure of the various classes of heterochromatin and the data obtained from meiotic analyses of the marsupial hylids are discussed.  相似文献   

6.
Chromosome pairing in maize   总被引:7,自引:2,他引:5  
This report summarizes our observations at pachytene on opposite-arms intercrosses between stocks of interchanges that involve chromosomes 1 and 5 in maize.—Pairing does not begin at the centromeres in these intercrosses.—We propose a model which assumes different probability values along each chromosome arm for the initial or primary site of pairing. Observations on the frequencies of the different types of configurations at pachytene were used to estimate probability values which satisfactorily fit the data.—There is a relatively low probability (of the order of.1 to.3) for the initial pairing to be in a short terminal segment (about.1 of the arm length). Initial pairing in the one or two short segments adjacent to the tip segment is much higher. Initial pairing is much lower in segments successively closer to the middles of the chromosome arms, and then zero or nearly zero in the proximal half of the arm. This means that the initial pairing may fail occasionally even in a relatively long interchanged segment and produce a T-shaped (3-armed) configuration.—After the initial pairing has occurred, the average probability that a secondary site of pairing is adjacent to the centromere in a segment.3 to.4 the length of an arm is low (.13, ranging from.02 to.29).—We can predict that in an intercross in which both breakpoints in both parental interchanges are far out on the chromosomes, "pairs" will be formed with nonhomologous ends (homologous differential segments paired). In these pairing could have begun at any point in the interstitial segments, but not likely in segments close to the centromeres.—Multiple secondary sites which vary in time or in order of pairing will explain the variation in position of the cross-shaped pachytene configuration in interchange heterozygotes.—The observed configuration in any one cell is the result of a particular combination of pairing events at the various sites. This is a very different concept of pairing from previous interpretations which described it as a result of zipper-like action, and the variation in position of the pachytene cross-configuration as the result of "shifts" in position.—Our cytogenetic results and their interpretation are in close agreement with reports on chromosome ultrastructure and molecular events in the early stages of meiosis, i.e. the attachment of chromosome ends to the nuclear membrane, the manner in which synaptonemal complexes develop, and the regions of DNA whose replication is delayed until zygonema.  相似文献   

7.
M. Schmid 《Chromosoma》1980,77(1):83-103
The chromosomes of 26 species of Anura from variously highly evolved groups were analysed with the fluorescent GC-specific antibiotics mithramycin and chromomycin A3 as well as with the AT-specific quinacrine. The mithramycin- and chromomycin A3-stainings generally resulted in a pattern of the constitutive heterochromatin opposite to the one obtained with quinacrine stain. The weaker a heterochromatic region fluoresces with quinacrine, the stronger is the intensity of the fluorescence achieved with mithramycin and chromomycin A3. Some of the telomeric and interstitial heterochromatic regions, however, exhibit no enhanced fluorescence with any of the fluorochromes. The nucleolar constrictions of the nucleolus organizer regions (NORs) displayed the brightest mithramycin- and chromomycin A3-fluorescence in the karyotypes and interphase nuclei of all species examined. The contrast of the brightly fluorescing GC-rich heterochromatin and of the NORs is considerably enhanced, when the non-fluorescent AT-specific oligopeptide distamycin A is employed as a counterstain. No banding patterns were observed with the fluorochromes in the euchromatic regions of the metaphase chromosomes; this is attributed to the strong spiralization of the anuran chromosomes. A cytochemical classification of the various chromatin types in the anuran chromosomes is discussed on the basis of the differential labelings found on the constitutive heterochromatin by means of the fluorochromes.This paper is dedicated to Professor Dr. Hans Bauer on the occasion of his 75th birthday  相似文献   

8.
The mitotic and meiotic chromosomes and interphase nuclei of the South American tree-frog Centrolenella antisthenesi were studied with various banding techniques. The karyotype is distinguished by a new category of heteromorphic XY/XX sex chromosomes in an initial stage of differentiation. In diakinesis of male meiosis the XY chromosomes exhibit the same pairing configuration as the autosomal bivalents. Analysis of the chromosomes with DNA base pair-specific fluorochromes revealed that unusual large amounts of brightly labeled AT-rich constitutive heterochromatin are located in the centromeric and pericentromeric regions of all autosomes and in the X chromosome. In most types of interphase cell nuclei the brightly fluorescent heterochromatic regions fuse to very large chromocenters.  相似文献   

9.
10.
Comparative painting has provided a wealth of useful information and helped to reconstruct the pathways of karyotype evolution within major eutherian phylogenetic clades. New data have come from gene localizations, BAC mapping and high throughout sequencing projects that enrich and provide new details of genome evolution. Extensive research on perissodactyl genomes has revealed not only increased rates of chromosomal rearrangements, but also an exceptionally high number of centromere repositioning events in equids. Here were combined new physical mapping, comparative painting and genome sequencing data to refine the putative ancestral karyotype maps and to revise the previously proposed scenario of perissodactyl karyotype evolution.  相似文献   

11.
徐婉约  王应祥 《植物学报》1983,54(5):620-624
减数分裂指DNA复制1次, 细胞核分裂2次, 产生染色体数目减半的单倍体配子, 是真核生物有性生殖所必需的环节。拟南芥(Arabidopsis thaliana)是分子遗传学研究的传统模式生物。近年来, 随着显微镜技术的快速发展, 利用细胞学方法观察拟南芥减数分裂过程中的染色体形态和同源染色体互作事件, 将有助于深入认识减数分裂的分子遗传机制。该文详细描述了染色体展片法观察拟南芥雄性减数分裂细胞中的染色体形态。  相似文献   

12.
Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2Mmm allele and resolved the apparent conflict with the dominance theory of Haldane''s rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes.  相似文献   

13.
Chromosome banding in Amphibia   总被引:5,自引:0,他引:5  
Fixed metaphase chromosomes of several species of Amphibia were treated with various restriction endonucleases and subsequently stained with Giemsa. Metaphases of man and chicken were examined in parallel under the same experimental conditions for comparison. The restriction enzymes always induce subsets of the C-banding patterns present in the amphibian karyotypes. The heterochromatic regions can be either resistant or sensitive to the restriction enzyme. The modified C-banding patterns revealed by different restriction endonucleases in the karyotype of the same species can be either extremely dissimilar or almost completely congruent. Correspondingly, the action of the same restriction enzyme on the karyotypes of different species may vary greatly. There is only rarely a correlation between the type of C-banding patterns produced by different restriction endonucleases and their specific base pair recognition sequences. In contrast to mammalian and avian chromosomes, restriction enzymes induce no multiple G-banding patterns in amphibian chromosomes. This is attributed to the difference in organization of the DNA in the genomes of poikilothermic vertebrates. The possible mechanisms of restriction endonuclease banding and the various uses of this technique for amphibian chromosomes are discussed.  相似文献   

14.
15.
M. Schmid 《Chromosoma》1978,68(2):131-148
In the chromosomes of 12 frog species of the suborder Diplasiocoela (Amphibia, Anura), the constitutive heterochromatin and the nucleolus organizer regions (NORs) have been specifically stained. On most of the chromosomes, aside from the centric heterochromatin, telomeric and interstitial C-bands were also found. The various C-bands display a very variable reaction to alkaline pretreatment; this indicates heterogeneity in the constitutive heterochromatin. Sex chromosomes could not be identified in any of the species studied. The number and chromosomal positions of the NORs vary quite strongly between species and between families. In 4 species of the genus Rana, there were, aside from the standard-NORs in chromosome pair 10, between 4 and 14 extra, small NORs detectable in the smaller chromosome pairs. As possible causal mechanism of these additional small NORs the reintegration of amplified rDNA during amphibian oogenesis is suggested. Q- or G-bands could only be recognized in mitotic prophase chromosomes. The strong spiralization of metaphase chromosomes prevents the differential demonstration of Q- or G-bands in the euchromatic regions.  相似文献   

16.
M. Schmid 《Chromosoma》1978,66(4):361-388
The distribution and quantity of constitutive heterochromatin and of the nucleolus organizer regions (NORs) on the chromosomes of 22 species of bufonids and hylids (Amphibia, Anura) was investigated. Three different kinds of constitutive heterochromatin were found and the frequency of brightly fluorescing heterochromatic regions was remarkably high. On almost all chromosomes there is centric and telomeric heterochromatin. Quantitative estimates of heterochromatin demonstrate that large DNA differences among closely related species can not be attributed to differing quantities of constitutive heterochromatin. In all species investigated, only one homologous pair of NORs was found, which lies preferentially in the proximal and interstitial segments of the long chromosome arms. The NORs are always associated with constitutive heterochromatin on both sides. The size variability between homologous NORs is very high. In the euchromatic regions of the metaphase chromosomes, neither Q- nor G-bands can be demonstrated; this can be attributed to an extremely strong contraction of the anuran chromosomes. On the basis of these results various mechanism of the chromosomal evolution in Anura are discussed.  相似文献   

17.
The karyotypes of 14 species of Anura from 9 genera of the suborders Amphicoela, Aglossa, Opisthocoela and Anomocoela were analysed with various banding techniques and conventional cytogenetic methods. The 18S + 28S and 5S ribosomal RNA genes were localized by means of in situ hybridization. No Q-, R- and G-banding patterns in the euchromatic segments of the metaphase chromosomes could be demonstrated in any of the species; this does not seem to be caused by a higher degree of spiralization of the amphibian chromosomes, but by the special DNA organization in these organisms. In most karyotypes, constitutive heterochromatin is present at centromeres, telomeres and nucleolus organizer regions (NORs), but rarely in interstitial positions. The heterochromatic regions are either quinacrine positive and mithramycin negative or vice versa. All species examined possess only one homologous pair of NORs; these display the brightest mithramycin fluorescence in the karyotypes. Many specimens exhibited unequal labelling of the two NORs both after silver and mithramycin staining as well as after in situ hybridization with 3H-18S + 28S rRNA. In four species, between one and six chromosome pairs with homologous 5S rRNA sites could be identified. The 5S rRNA genes and the 18S + 28S rRNA genes are closely linked in two species. In the male meiosis of the Amphicoela and Opisthocoela, there are intersitial, subterminal and terminal chiasmata in the bivalents, whereas only terminal chiasmata are observed in the bivalents of the Aglossa and Anomocoela. No heteromorphic sex-specific chromosomes could be demonstrated in any of the species. The differential staining techniques revealed that the chromosomal structure in these four suborders is largely the same as in the highly evolved anuran suborders Procoela and Diplasiocoela.  相似文献   

18.
The mitotic and meiotic chromosomes of the marsupial frog Gastrotheca riobambae were analysed with various banding techniques. The karyotype of this species is distinguished by considerable amounts of constitutive heterochromatin and unusual, heteromorphic XY sex chromosomes. The Y chromosome is considerably larger than the X chromosome and almost completely heterochromatic. The analysis of the banding patterns obtained with GC- and AT-base-pair-specific fluorochromes shows that the constitutive heterochromatin in the Y chromosome consists of at least three different structural categories. The only nucleolus organizer region (NOR) of the karyotype is localized in the short arm of the X chromosome. This causes a sex-specific difference in the number of NOR: female animals have two NORs in diploid cells, male animals one. No cytological indications were found for the inactivation of one of the two X chromosomes in the female cells. In male meiosis, the heteromorphic sex chromosomes form a characteristic sex-bivalent by pairing their telomeres in an end-to-end arrangement. The significance of the XY/XX sex chromosomes of G. riobambae for the study of X-linked genes in Amphibia, the evolution of sex chromosomes and their specific DNA sequences, and the significance of the meiotic process of sex chromosomes are discussed.  相似文献   

19.
A cytogenetic study performed on a population of the South American leptodactylid frog Eleutherodactylus maussi revealed multiple sex chromosomes of the X1X1X2X2/X1X2Y (=XXAA/XXAY) type. The diploid chromosome number is 2n=36 in all females and 2n=35 in most males. The multiple sex chromosomes originated by a centric fusion between the original Y chromosome and a large autosome. In male meiosis the X1X2Y (=XXAY) multiple sex chromosomes form a classical trivalent configuration. E. maussi is the first species discovered in the class Amphibia that is distinguished by a system of multiple sex chromosomes. Only one single male was found in the population with 2n=36 chromosomes and lacking the Y-autosomal fusion. This karyotype (XYAA) is interpreted as the ancestral condition, preceding the occurrence of the Y-autosome fusion.by H.C. Macgregor  相似文献   

20.
Chromosome banding in amphibia   总被引:4,自引:1,他引:3  
The distribution of constitutive heterochromatin on the chromosomes of Triturus a. alpestris, T. v. vulgaris and T. h. helveticus (Amphibia, Urodela) was investigated. Sex-specific chromosomes were determined in the karyotypes of T. a. alpestris (chromosomes 4) and T. v. vulgaris (chromosomes 5). The male animals have one heteromorphic chromosome pair, of which only one homologue displays heterochromatic telomeres in the long arms; the telomeres of the other homologue are euchromatic. This chromosome pair is always homomorphic and without telomeric heterochromatin in the female animals. There is a highly reduced crossing-over frequency between the heteromorphic chromosome arms in the male meiosis of T. a. alpestris; in T. v. vulgaris no crossing-over at all occurs between the heteromorphic chromosome arms. No heteromorphisms between the homologues exist on the corresponding lampbrush chromosomes of the female meiosis. In T. h. helveticus no sex-specific heteromorphism of the constitutive heterochromatin could be determined. The male animals of this species, however, already possess a chromosome pair with a greatly reduced frequency of chiasma-formation in the long arms. The C-band patterns and the pairing configurations of the sex-specific chromosomes in the male meiosis indicate an XX/XY-type of sex-determination for the three species. A revision of the literature about experimental interspecies hybridizations, gonadic structure of haploid and polyploid animals, and sex-linked genes yielded further evidence in favor of male heterogamety. The results moreover suggest that the heterochromatinization of the Y-chromosome was the primary step in the evolution of the sex chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号