首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 473 毫秒
1.
为解决中国石油辽阳石化公司100万t/a蜡油加氢裂化装置低负荷生产时单位能耗增大及加氢尾油收率过高的问题,采取了将m(直馏蜡油)∶m(焦化蜡油)由87∶13调整为91∶9,进料温度由135℃提高至145℃,氢气/原料油(体积比)由1 174降低至870,回炼部分加氢尾油等措施。结果表明,优化后,装置能耗由39.22 kg/t(以标准油记,下同)降低至34.30 kg/t,在产品性质不变的前提下,低附加值产品尾油收率从11%降低至9%,优化了产品分布,达到了降低成本提高效率的目的。  相似文献   

2.
为验证加氢减底尾油加氢制取食品级白油的可行性,以洛阳金达石化有限责任公司100 kt/a宽馏分加氢装置的减底尾油为原料,采用贵金属组合催化剂A/B,在金达研发中心200 m L加氢试验装置上进行加氢改质的研究。在反应压力12.0 MPa、氢油体积比900∶1、质量空速1.0 h~(-1)条件下,考察了反应温度对降凝效果的影响。结果表明,生成油倾点随着反应温度的升高而降低,倾点最低-36℃,芳烃质量分数可稳定在0.03%,产物收率97%以上。对加氢生成油进一步分馏切割,得到23%的5号白油馏分和41%的低黏度1号白油馏分,其质量指标分别满足工业级和食品级白油标准。  相似文献   

3.
以不同浓度和温度的酸碱溶液改性活性炭纤维(ACF),发现8mol/L、90℃的混酸改性ACF对二苯并噻吩(DBT)的脱除效果较好,对其进行了BET、FTIR及Boehm滴定的结构表征。结果表明,改性后ACF的比表面积、孔容和含氧官能团明显增加。将改性后的ACF对DBT模拟油的脱硫条件进行优化,得到适宜的操作条件为:超声时间80 min,吸附温度50℃,吸附时间1.5h,m(油)∶m(剂)=100∶1,在该条件下,吸附剂的吸附容量可达到49.61mg/g。改性后的ACF对DBT有较好的重复使用性,且等温吸附数据的拟合符合Langmuir方程,吸附饱和硫容量可达到57.80mg/g。  相似文献   

4.
采用超声波辅助复合溶剂脱附萃取工艺提取废白土中的油,考察超声波频率、溶剂用量、处理温度、时间、处理次数对废白土中油分回收率的影响,并与传统的搅拌处理工艺相比较。结果表明:以100 g废白土为例,超声波处理的最佳工艺条件为超声波频率68 kHz、溶剂用量80 mL、温度30 ℃、时间10 min、非极性溶剂抽提2次、混合溶剂抽提2次;在最佳工艺条件下,总油分回收量可达30.4g;要达到相同的效果,传统搅拌工艺需要更高的温度、更长的处理时间和更多的溶剂;回收的理想油符合基础油特性,再生白土的吸附能力大部分得到恢复,可用于润滑油补充精制。超声波辅助溶剂处理废白土工艺技术上可行,每处理 1 t白土可得经济效益4799元。  相似文献   

5.
采用共沉淀法制备不同Cu/Zn摩尔比铜-锌-铝水滑石前体,焙烧后经过乙炔预处理和H2还原得到CumZn3-mAl-LDO(T140-R150)催化剂(m取值为1、1.5、2、3)。对上述含碳铜-锌-铝催化剂进行N2物理吸附、X射线衍射、扫描电子显微镜和透射电镜表征,研究其在大量乙烯存在时乙炔选择性加氢反应中的催化性能。结果表明:在铜-铝水滑石中引入锌,可提高前体中铜的分散度,有利于碳化铜(CuxC)加氢活性相的生成,提高乙炔选择性加氢反应的性能。催化剂最佳制备条件为:Cu/Zn摩尔比1,乙炔处理温度140℃,乙炔处理时间2 h,氢气还原温度150℃,氢气还原时间3 h。在温度100℃和压力0.1 MPa条件下,Cu1.5Zn1.5Al-LDO(T140-R150)催化乙炔选择性加氢反应的乙炔转化率达100%,乙烯选择性为53.9%,C4选择性为15.5%,乙烷选择性为30.6%。  相似文献   

6.
介绍中国石化齐鲁分公司重整生成油脱烯烃工艺的工业应用情况。装置运行结果表明:普通白土平均单位吸附量为2.2 t/t,2种高效白土单位吸附量是普通白土的2.4倍、3.32倍,分子筛型吸附剂是普通白土的7.78倍并能够再生;重整生成油的后加氢脱烯烃+芳烃分子筛脱烯烃组合工艺具有芳烃损失少、运行周期长的特点。新增后加氢反应器后,在组合工艺的考察期内,运行周期达到普通白土的24.7倍时,仍具有很好的活性和稳定性。该组合工艺基本消除了频繁更换白土带来的环保压力。  相似文献   

7.
新型裂解汽油一段加氢催化剂的研制   总被引:5,自引:0,他引:5  
研究了一种用于裂解汽油一段选择加氢的催化剂。该催化剂以钯为活性组分,改性Al2O3为载体。进行了1000h的稳定性试验。试验结果表明:在氢分压4.5MPa,氢油体积比100:1,低温(入口温度0~45℃),高空速(3~5h-1新鲜原料)的工艺条件下,加氢产品双烯值始终<2.0克碘/100克油,催化剂的活性、稳定性较好。  相似文献   

8.
采用热沉降—蒸馏—吸附精制的方法处理废润滑油,考察了热沉降—常压蒸馏的预处理效果,分别以单一白土、硅酸镁/硅酸钠/白土复配药品(三者的质量比为1∶1∶2)为吸附剂,对其吸附精制工艺条件进行了优化,并对2种工艺的吸附精制效果进行了对比。结果表明,复配药品吸附精制效果较好,在复配药品添加量(占废润滑油的质量分数)为12%,精制温度为130℃,精制时间为60 min的优化条件下,所得再生油的黏度指数为99.00,灰分质量分数为0.084%,色度为4号,收率达到86.46%。  相似文献   

9.
高温煤焦油加氢制取汽油和柴油   总被引:17,自引:4,他引:13  
以山西某焦化厂高温煤焦油为原料,采用加氢保护剂、加氢脱金属催化剂、加氢精制催化剂、缓和加氢裂化催化剂组成的级配方式在小型加氢评价装置上进行加氢工艺研究,并在系统压力12.0M Pa条件下考察了反应温度、氢与油体积比、液态空速对高温煤焦油加氢的影响。实验结果表明,在系统压力12.0M Pa、温度380℃、氢与油体积比1 800∶1、液态空速0.28h-1的条件下对高温煤焦油进行加氢改质,可以实现煤焦油的轻质化,汽油馏分(初馏点~200℃)、柴油馏分(200~360℃)、加氢尾油(高于360℃)分别占产物质量的17.69%,62.04%,20.27%。加氢尾油可作为优质的催化裂化或加氢裂化掺炼原料。  相似文献   

10.
降低柴汽比是炼化企业满足市场需求、提质增效、可持续发展的有效措施,轻柴油与加氢尾油共裂解可作为降低柴汽比的重要途径之一。在实验室评价装置上进行轻柴油、加氢尾油的裂解性能试验,并在USC工业裂解炉上进行了不同裂解炉出口温度、混合比例的轻柴油和加氢尾油共裂解标定试验。结果表明:裂解三烯和C_5C~+_5收率总计达到76%以上,轻柴油裂解低碳烯烃收率远低于加氢尾油,但高附加值的裂解C_5C~+_5收率高10%~15%;轻柴油和加氢尾油比为2∶5、在COT为835℃下共裂解,乙烯、丙烯和三烯的收率分别达到31.48%、15.29%和53.05%;而轻柴油和加氢尾油掺混比例为1∶3、在841℃共裂解烯烃收率更高,即轻柴油与加氢尾油共裂解降低柴汽比技术经济合理。  相似文献   

11.
制备了固体超强酸催化剂SO42-/CeO2,探索了合成D,L-丙交酯的催化剂的最优条件:用表面活性剂十二胺制备介孔二氧化铈,1mol·L-1的硫酸浸渍24h,500℃焙烧5h制备的SO42-/CeO2固体超强酸酸性强、催化活性好。并得到此催化剂合成D,L-丙交酯最优工艺条件:催化剂用量是乳酸质量的1.0%,脱水齐聚化温度为60℃~130℃,时间1.5h,解聚温度150℃~210℃,时间90min,此时丙交酯收率最高,达62.3%。  相似文献   

12.
固体酸催化剂在对羟基苯甲酸酯合成中的应用   总被引:9,自引:0,他引:9  
考察了SO_4~(2-)/膨润土固体酸催化剂在对羟基苯甲酸与甲醇、乙醇、正丁醇酯化反应中的作用,以及反应时间,催化剂用量和溶剂对酯化反应的活性的影响。实验发现,在以甲苯作溶剂,反应温度95~110℃,反应时间3~4h,催化剂用量0.4m%条件下,催化效果最佳,表明该催化剂是一种有效的对羟基苯甲酸酯化催化剂。  相似文献   

13.
固体超强酸SO_4~(2-)/ZrO_2-NiO异构化性能的研究   总被引:1,自引:0,他引:1  
首次利用尿素为沉淀剂,在常压较低反应温度下制备了具有对正戊烷有较高反应活性与很高异构化选择性的SO_(?)~(2-)/ZrO_2-NiO固体超强酸催化剂,系统研究了催化剂的掺镍量、灼烧温度、反应温度以及催化剂反应前处理条件对催化剂活性及异构化选择性的影响,发现当Zr:Ni=52:10(原子比)时,正戊烷的平均转化率可达44.6%,异构化选择性接近于100%,是相当理想的正戊烷异构化催化剂。  相似文献   

14.
SO_4~(2-)/TiO_2-凹凸棒土催化合成尼泊金丁酯   总被引:4,自引:1,他引:3  
制备了固体超强酸催化剂SO_4~2/TiO_2-凹凸棒土催化剂,用于催化合成尼泊金丁酯。较佳的催化剂制备条件为:硫酸浓度1.0 mol/L、焙烧温度500℃、焙烧时间为3 h。合成尼泊金丁酯的最佳反应条件是:n(对羟基苯甲酸):n(丁醇)=1:4,催化剂用量3%,反应时间4 h,收率4.5%。该催化剂酸强度小于-14.52,可以重复使用多次。  相似文献   

15.
研究了SO_4~(2-)/TiO_2-ZrO_2型催化剂的制备及其催化合成己二酸二丁酯反应。考察了催化剂焙烧温度、原料配比、反应时间及催化剂用量等因素对酯化反应的影响,较佳反应条件为:催化剂焙烧温度500℃,催化剂用量5%(以己二酸质量为基准),n(己二酸):n(正丁醇)=1:2.5,正丁醇为带水剂、在回流温度下反应4 h,酯化率可达99.35%。结果表明,SO_4~(2-)/TiO_2-ZrO_2在产物颜色、出水率和催化剂回收等方面明显优于对甲苯磺酸、浓硫酸催化剂。  相似文献   

16.
制备了 SO_4~(2-)/La_2O_3~TiO_2-HZSM-5超强酸催化剂,用于催化癸二酸和正丁醇的酯化反应,研究了制备条件对催化剂性能的影响。结果表明:La~(3+)浸渍浓度为0.07 mol/L,经110℃烘干后于500℃焙烧3 h 所得催化剂的活性较好。用正交实验法考察了酯化反应的影响因素,最佳实验条件为:正丁醇/癸二酸(物质的量比)=4:1,反应时间3 h,催化剂用量1.5%(质量分数),酯化率可达98.7%。该催化剂具有良好的重复使用和再生能力。  相似文献   

17.
SO_4~(2-)/TiO_2-WO_3催化1,4-丁二醇液相脱水环化合成四氢呋喃   总被引:3,自引:0,他引:3  
以钛酸四丁酯为原料,十六烷基三甲基溴化铵(CTAB)作模板剂,通过水热法制备出TiO_2,并进一步制得SO_4~(2-)/TiO_2-WO_3固体超强酸,采用IR、XRD、BET对其进行了表征。以催化1,4-丁二醇脱水制备四氢呋喃为探针反应,通过正交实验确定了反应的最佳条件:反应温度180~190℃,反应时间45 min,w(催化剂)= 4.6%(相对1,4丁二醇质量),四氢呋喃的收率可达91.5%。催化剂重复使用3次,收率仍可达87.0%,同时对反应机理进行了探讨。  相似文献   

18.
苯并环丁烯粗品的提纯研究   总被引:2,自引:0,他引:2  
考察了对于邻甲基苄氯裂解产物苯并环丁烯混合物的3种除杂方法,并确定了用硫酸处理苯并环丁烯混合物的工艺条件。采用浓度为80%的硫酸处理苯并环丁烯混合物,处理温度为20℃,处理时间为120min,苯乙炔除去率达100%、苯乙烯除去率为901,苯并环丁烯收率约76%;同时验证了提纯后的苯并环丁烯的结构。  相似文献   

19.
在两类离子液体([bmim]BF_4与[bmim]PF_6)及异丙醇或无溶剂等条件下考察了壬二酸合成中的溶剂效应,并采用过氧化氢氧化油酸经二步反应合成了壬二酸。结果表明,[bmim]PF_6是合成壬二酸的最好溶剂。第一步较佳反应条件为:反应温度60℃,n(油酸)∶n(过氧化氢)∶n(钨酸)∶n(溶剂)=1.0∶3.0∶0.04∶1.24,反应时间1 h;第二步较佳反应条件为:m(中间产物):m(过氧乙酸)=1∶4,反应温度90℃,反应时间3 h。壬二酸收率为39%,熔点104~105.3℃,纯度达98%。  相似文献   

20.
孙浩  蔡春 《石油化工》2005,34(10):977-979
以碳酸乙烯酯(EC)为原料,用磺酰氯(SO2C l2)作为氯化剂生成一氯代碳酸乙烯酯(C lEC),再以三乙胺为脱卤化剂在EC溶剂中合成了碳酸亚乙烯酯(VC),优化了制备C lEC和VC的工艺参数。制备C lEC的最优工艺条件:反应温度90℃、反应时间1.0~1.5h、n(EC)∶n(偶氮二异丁腈)=600∶1、n(EC)∶n(SO2C l2)=1.00∶1.25;在此条件下,C lEC的收率为65.3%。制备VC的最优工艺条件:反应温度60℃、反应时间1.5h、n(C lEC)∶n(三乙胺)=1.00∶1.50、m(C lEC)∶m(EC)=1∶2;在此条件下,VC的收率为71.8%。该方法简化了工艺,缩短了反应时间,易于工业化生产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号