首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
二维电离室阵列探测器的室壁效应研究   总被引:1,自引:1,他引:0  
由于二维电离室阵列探测器在剂量测量精度、实时性、可重复性上具有优势,其在放射治疗中的应用日益广泛。二维电离室阵列探测器由平行板电离室单元组成的二维平面阵列构成,阵列单元由充空气的腔室(空腔)及其室壁构成。根据空腔理论,空腔中的电离几乎全部由来自室壁的次级电子产生,因此研究室壁效应是提高二维电离室阵列探测器性能与优化其结构设计的重要环节。利用蒙特卡罗方法,分析研究了不同能量的入射光子在不同部位的室壁中产生的次级电子数量随室壁厚度的变化规律。结果表明,进入空腔的大部分次级电子由电离室前壁产生,且随入射光子能量增加,次级电子数达到最大所需的室壁厚度也增加;对于侧壁和后壁,大部分次级电子产生于空腔附近2~3 mm厚的室壁中,且对入射光子能量不敏感。同时还研究了不同探测器结构对各探测单元之间信号串扰的影响。结果表明,串扰程度与侧壁厚度密切相关,且随入射光子能量的增加而增大,而与空腔尺寸的关系不大。研究结果对二维电离室阵列探测器的设计具有重要的指导价值。  相似文献   

2.
为保证放射治疗中绝对剂量验证更加快速、准确可靠,用MC法模拟γ光子在不同室壁材料电离室灵敏体积中的能量沉积,并经过计算得出不同室壁材料的能量响应曲线,同时研究了不同室壁厚度下电离室的能量响应曲线,比较得出与空气壁等效的室壁材料。使用空气等效材料可以提高绝对剂量验证中电离室的测量精度,此方法可作为绝对剂量验证中电离室室壁设计的参考。  相似文献   

3.
放疗中二维平板电离室阵列所测剂量的空间映射研究   总被引:2,自引:2,他引:0  
杜强  吴志芳 《原子能科学技术》2016,50(10):1875-1880
二维平板电离室阵列常用于临床放疗的剂量分布探测,其所测剂量实际对应的空间位置(即有效测量点或剂量-空间位置对应关系)是精确放疗中需研究的重要问题。本文采用蒙特卡罗方法研究了用于放疗剂量分布监测的二维平板电离室阵列的有效测量点位置及其随电离室的空腔直径、空腔厚度和射线能量等的变化规律。先用蒙特卡罗模拟得到水模体在MeV级光子束辐照下射野中心轴上的剂量曲线,再在相同条件下模拟获得二维平板电离室阵列测得的剂量曲线,然后通过相关性分析,得到有效测量点。结果表明,用于放疗的二维平板电离室阵列的有效测量点相对于前表面中心有一小于1 mm的偏移;该偏移量随电离室空腔厚度、射线能量的增加而增加,随电离室空腔直径的增加而减小。  相似文献   

4.
研制一款同时测量质子束流与剂量的平板电离室。利用基于有限元分析的Ansys模拟软件和Geant4蒙特卡罗软件对电离室电场分布、等效水厚度、不同能量质子束穿过电离室后的横向散射等参数进行模拟,进而优化电离室结构。并利用YXLON 450 kV X射线管、6 MeV脉冲加速器与北京大学串列加速器对电离室进行初步测试,电离室运行稳定,射线位置二维分布信息采集准确,性能良好。  相似文献   

5.
本文研制了一台测量电子束和β射线吸收剂量的外推电离室,其空腔室壁材料可拆换并分别与空气、组织和硅等效,收集电极名义直径为1.5、3、10和30mm,空气空腔可变范围为0.2~15mm。该外推电离室具有在空腔内部测温,自动改变窗口上方材料厚度及采用微型计算机控制等特点。适用于测10 MeV能量以下,剂量率为10~5~10~(-3)Gy/h的电子或β射线吸收剂量。整个外推电离室自动测剂量系统在测~(204)TLβ放射源表面剂量率的不确定度为2.3%。测1.5 MeV电子束在硅和哈密瓜深部剂量率时,不确定度分别为4.0%和2.8%。  相似文献   

6.
厚入射窗真空康普顿探测器设计   总被引:1,自引:0,他引:1  
利用γ射线与物质作用的康普顿散射效应,设计了用于强流脉冲γ射线测量的具有厚入射窗真空型康普顿探测器。前窗采用厚度4.5 mm的Al,易于机械加工、真空除气和真空保持。收集极为φ50 mm×5.6 mm的Fe,对于1.25 MeV的γ射线,探测器灵敏度的设计值为4.5×10-22C/MeV。  相似文献   

7.
收集电极是二维空气电离室剂量探测器的重要组成部分,影响剂量测量的准确度。为了研究收集电极对剂量测量的影响规律,采用蒙特卡罗程序EGSnrc,分别在不同射线能量下对不同材质(C、Al、Cu)、不同收集电极厚度(5~70 μm)进行模拟仿真,给出了影响规律的定量分析。结果表明,在工艺允许的情况下,应优先选择C作为收集电极材料;当只能采用Cu作为收集电极材料时,应采用工艺可达的最小厚度,并在使用中进行标定。  相似文献   

8.
正为建立低能重核素加速器质谱测量技术,需研发薄窗型气体电离室。对于传统的气体电离室,一般采用Mylar膜,但其厚度需在1μm左右,但低能重核素在这种膜中会损失很大能量(SRIM模拟1.2 MeV的~(129)I穿不过1μm的Mylar膜,如图1所示),导致电离室无法测量低能重离子。为解决这个问题,30nm厚的Si_3N_4膜作为探测器的入射窗,SRIM模拟显示1.2 MeV的~(129)I在30nm厚的Si_3N_4窗中损失的能量为0.113 MeV,满足低能重核素测量要求。在此基础上,开展了低能重核素探测器的设计和建造,结构如图2所示,  相似文献   

9.
探测器灵敏度及其能量响应特性在探测器的设计和研制过程中占有十分重要的地位.从理论和实验两个方面研究了ICI探测器的γ灵敏度及其γ射线能量响应特性.在60 Co 1.25MeV γ辐射源装置上进行实验测量得到ICI探测器的单位γ灵敏度为1.8×10-20 (±5%)C·cm2 ,理论计算的单位γ灵敏度为1.78×10-20 C·cm2 (γ能量1.25MeV),理论和实验结果符合得较好.研究结果表明,入射γ射线能量在1~10MeV范围内变化时,ICI探测器具有平坦的γ灵敏度响应曲线.  相似文献   

10.
为快速准确地实现碳离子治疗计划的三维剂量验证,采用有机玻璃PMMA(聚甲基丙烯酸甲酯)为电离室室壁和水等效模体,设计了一种三维电离室阵列,并通过Geant4软件对三维电离室阵列的结构设计进行了深入研究与验证。首先通过模拟不同能量碳离子束在水和PMMA模体中沉积的剂量分布,计算了PMMA模体的水等效厚度系数;然后研究了三维电离室阵列中电离腔室间的距离及信号导线对其剂量测量准确度的影响;最后模拟并验证了碳离子束在三维电离室阵列中沉积的剂量分布。结果表明:PMMA模体的水等效厚度系数为1.151;相邻电离腔室间的信号串扰主要来源于前侧的电离腔室,且串扰程度与电离腔室间距呈反比,间距为1 mm时串扰程度占电离腔室内剂量的3%,间距为30 mm时串扰影响可完全消除;信号导线对后侧电离腔室内剂量的干扰影响约为1%。将碳离子束在三维电离室阵列中沉积的剂量分布与PMMA模体中的剂量分布进行对比,碳离子束的射程具有良好的一致性,偏差为0.5 mm。  相似文献   

11.
本文依托250~600 kV X射线光机,建立高能量段的重过滤窄谱X射线辐射质,研制石墨空腔电离室,通过蒙特卡罗模拟和实验测量完成250~600 kV X射线空气比释动能量值复现。在300 kV辐射质下,利用自由空气电离室和石墨空腔电离室完成X射线空气比释动能量值复现,相对标准不确定度分别为0.61%和0.45%,两种方法测量结果相对偏差为0.09%。利用研制的石墨空腔电离室在137Cs和60Co γ射线基准辐射场中完成空气比释动能的量值复现,结果与基准值的相对偏差分别为0.27%和0.39%,在不确定度范围内等效一致,验证了石墨空腔电离室测量250~600 kV X射线空气比释动能方法的可行性。  相似文献   

12.
由放射源^137Cs和^60Co产生的ν射线参考辐射在辐射监测仪表的校准中起着重要作用。对于场所辐射监测仪表的校准,参考辐射需提供周围剂量当量H^*(10)的约定真值。本研究采用H^*(10)标准电离室法测定周围剂量当量H^*(10)的约定真值,利用MCNP4C蒙特卡罗模拟程序,提出了基于双金属补偿法的电离室结构设计方案。结果表明,在15~1500keV能量范围内,该电离室能量响应满足国际标准ISO4037—4的要求,该研究结果对H^*(10)标准电离室的建立具有重要的指导作用。  相似文献   

13.
涂硼电离室组合快中子探测器研制及其响应函数   总被引:1,自引:0,他引:1  
研制了涂硼电离室组合快中子探测器。用外径分别为55、80、130、220、285 mm的5个高密度聚乙烯圆柱体作为快中子的慢化体包裹40 mm×200 mm的涂硼电离室,组合成一种可测量从热中子到十几MeV快中子的圆柱型Bonner探测器。借助Geant4蒙特卡罗方法模拟计算,给出了这种结构Bonner探测器探测系统的响应函数。将圆柱型Bonner探测器放置在标准中子源辐射场中进行了实验测量。在实际辐射场中,高密度聚乙烯圆柱体外径为220 mm时,圆柱型Bonner探测器的灵敏度达8.702×10-15 A•cm2•s。同时对实验测量值与理论模拟结果进行了比较分析。结果表明,模拟结果与实验值在数据读取误差范围内吻合。  相似文献   

14.
利用自制的直径f160mm有机玻璃球形模体和能够插入球形模体中心的PTW31006型0.015cm3尖点电离室测量了3种X(g)刀的等中心处不同辐射野的吸收剂量,并与半导体探测器(灵敏体积为1mm2?.5mm)的测量数据进行了比对,对电离室和半导体探测器的不同适用范围进行了分析,给出了一种适合X(g)刀的吸收剂量测量方法。  相似文献   

15.
参考辐射是辐射剂量监测仪器校准工作必备的条件, 60 Co单源照射装置是产生参考辐射场的重要设备。本文利用蒙特卡罗方法对 60 Co单源照射装置产生的辐射场的均匀性和散射辐射进行模拟计算,完成照射装置中散射腔、准直光阑和快门体等部分的设计并利用PTW电离室对辐射场进行测量。结果表明,辐射场中散射辐射和均匀性与模拟结果符合较好,满足设计要求。  相似文献   

16.
在γ剂量率测量标定中,使用GD-40管作为γ探头来测量γ剂量率。实验室标定γ探头灵敏度在钴源上进行,60Go源平均能量为1.25MeV,而在实际测量中,辐射场的γ射线包含了各种能量成份,因此对实验室标定的灵敏度在实际应用中就需要进行修正。本工作通过蒙特卡罗粒子输运模拟方法,计算了单能与辐射场能谱的剂量比值,给出了修正因子,从而使γ剂量率灵敏度标定更加准确。  相似文献   

17.
We developed a small Area Radiation Monitor (ARM) prototype with high accuracy performance by combining a cadmium telluride (CdTe) detector with the G(E) function method. To obtain the measurement accuracy required for ARMs, we created a G(E) function based on detailed spectral responses. The accuracy of the derived dose rate and other expected requirements for practical applications were experimentally evaluated. The accuracy for a CdTe detector with dimensions of 5x5x5 mm3 was within 14% in the 60–300 keV range and within 10% in the 300 keV--1.8 MeV range, which was comparable to a large ARM with an ionization chamber. The accuracy for a CdTe detector with dimensions of 2x2x2mm3 was within 23% in the 60–300 keV range and within 14% in the 300 keV—1.8 MeV range, which was inferior to the 5x5x5 mm3 detector but higher than a small ARM using a silicon PIN photodiode.  相似文献   

18.
采用EGS5蒙特卡罗程序模拟计算了一种球型高压电离室的室壁厚度。计算给出了多种不同室壁厚度下,单位光子注量沉积在球型高压电离室氩气中的能量;分析归纳出用于计算球型高压电离室对特定范围内室壁厚度和光子能量的响应因子的公式;依据国家相关检定规范和归纳公式,给出了球型高压电离室的最佳室壁厚度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号