首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Casticin, a polymethoxyflavone, derived from natural plant Fructus Viticis exhibits biological activities including anti‐cancer characteristics. The anti‐cancer and alter gene expression of casticin on human colon cancer cells and the underlying mechanisms were investigated. Flow cytometric assay was used to measure viable cell, cell cycle and sub‐G1 phase, reactive oxygen species (ROS) and Ca2+ productions, level of mitochondria membrane potential (ΔΨm) and caspase activity. Western blotting assay was used to detect expression of protein level associated with cell death. Casticin induced cell morphological changes, decreased cell viability and induced G2/M phase arrest in colo 205 cells. Casticin increased ROS production but decreased the levels of ΔΨm, and Ca2+, increased caspase‐3, ‐8, and ‐9 activities. The cDNA microarray indicated that some of the cell cycle associated genes were down‐regulated such as cyclin‐dependent kinase inhibitor 1A (CDKN1A) (p21, Cip1) and p21 protein (Cdc42/Rac)‐activated kinase 3 (PAK3). TNF receptor‐associated protein 1 (TRAP1), CREB1 (cAMP responsive element binding protein 1) and cyclin‐dependent kinase inhibitor 1B (CDKN1B) (p27, Kip1) genes were increased but matrix metallopeptidase 2 (MMP‐2), toll‐like receptor 4 (TLR4), PRKAR2B (protein kinase, cAMP‐dependent, regulatory, type II, bet), and CaMK4 (calcium/calmodulin‐dependent protein kinase IV) genes were inhibited. Results suggest that casticin induced cell apoptosis via the activation of the caspase‐ and/or mitochondria‐dependent signaling cascade, the accumulation of ROS and altered associated gene expressions in colo 205 human colon cancer cells.  相似文献   

2.
Oral cancer is one of the cancer‐related diseases in human populations and its incidence rates are rising worldwide. Fisetin, a flavonoid from natural products, has been shown to exhibit anticancer activities in many human cancer cell lines but the molecular mechanism of fisetin‐induced apoptosis in human oral cancer cells is still unclear; thus, in this study, we investigated fisetin‐induced cell death and associated signal pathways on human oral cancer SCC‐4 cells in vitro. We examined cell morphological changes, total viable cells, and cell cycle distribution by phase contrast microscopy and flow cytometry assays. Reactive oxygen species (ROS), Ca2+, mitochondria membrane potential (ΔΨm), and caspase‐8, ‐9, and ‐3 activities were also measured by flow cytometer. Results indicate that fisetin induced cell death through the cell morphological changes, caused G2/M phase arrest, induction of apoptosis, promoted ROS and Ca2+ production, and decreased the level of ΔΨm and increased caspase‐3, ‐8, and ‐9 activities in SCC‐4 cells. DAPI staining and DNA gel electrophoresis were also used to confirm fisetin‐induced cell apoptosis in SCC‐4 cells. Western blotting also found out that Fisetin increased the proapoptotic proteins such as Bax and Bid and decreased the antiapoptotic proteins such as Bcl‐2. Furthermore, results also showed that Fisetin increased the cytochrome c, AIF, and Endo G release from mitochondria in SCC‐4 cells. We also used ATF‐6α, ATF‐6β, GADD153, and GRP78 which indicated that fisetin induced cell death through ER stress. Based on those observations, we suggest that fisetin induced cell apoptosis through ER stress, mitochondria‐, and caspase‐dependent pathways.  相似文献   

3.
Crude extract of Corni Fructus (CECF) has been used in Traditional Chinese medicine for the treatment of different diseases for hundreds of years. The purpose of this study was to investigate the cytotoxic effects of CECF on U‐2 OS human osteosarcoma cells. Flow cytometry was used for measuring the percentage of viable cells, cell‐cycle distribution, apoptotic cells in sub‐G1 phase, reactive oxygen species (ROS), Ca2+ levels, and mitochondrial membrane potential (ΔΨm). Comet assay and 4′‐6‐diamidino‐2‐phenylindole staining were used for examining DNA damage and condensation. Western blotting was used to examine apoptosis‐associated protein levels in U‐2 OS cells after exposed to CECF. Immunostaining and confocal laser system microscope were used to examine protein translocation after CECF incubation. CECF decreased the percentage of viability, induced DNA damage and DNA condensation, G0/G1 arrest, and apoptosis in U‐2 OS cells. CECF‐stimulated activities of caspase‐8, caspase‐9, and caspase‐3, ROS, and Ca2+ production, decreased ΔΨm levels of in U‐2 OS cells. CECF increased protein levels of caspase‐3, caspase‐9, Bax, cytochrome c, GRP78, AIF, ATF‐6α, Fas, TRAIL, p21, p27, and p16 which were associated with cell‐cycle arrest and apoptosis. These findings suggest that CECF triggers apoptosis in U‐2 OS cells via ROS‐modulated caspase‐dependent and ‐independent pathways. © 2012 Wiley Periodicals, Inc. Environ Toxicol 29: 1020–1031, 2014.  相似文献   

4.
Ouabain, a cardiotonic steroid and specific Na+/K+‐ATPase inhibitor, has a potential to induce cancer cell apoptosis but the mechanisms of apoptosis induced by ouabain are not fully understand. The aim of this study was to investigate the cytotoxic effects of ouabain on human prostate cancer DU 145 cells in vitro. Cell morphological changes were examined by phase contrast microscopy. Cell viability, cell cycle distribution, cell apoptosis, DNA damage, the production of ROS and Ca2+, and mitochondrial membrane potential (ΔΨm) were measured by flow cytometry assay. Results indicated that ouabain induced cell morphological changes, decreased total cell viability, induced G0/G1 phase arrest, DNA damage, and cell apoptosis, increased ROS and Ca2+ production, but decreased the levels of ΔΨm in DU 145 cells. Ouabain also increased the activities of caspase‐3, ‐8, and ‐9. Western blotting was used for measuring the alterations of apoptosis‐associated protein expressions in DU 145 cells and results indicated that ouabain increased the expression of DNA damage associated proteins (pATMSer1981, p‐H2A.XSer139, and p‐p53Ser15) and ER‐stress‐associated proteins (Grp78, ATF6β, p‐PERKThr981, PERK, eIF2A, GADD153, CaMKIIβ, and caspase‐4) in time‐dependently. Furthermore, ouabain increased apoptosis‐associated proteins (DR4, DR5, Fas, Fas Ligand, and FADD), TRAIL pathway, which related to extrinsic pathway, promoted the pro‐apoptotic protein Bax, increased apoptotic‐associated proteins, such as cytochrome c, AIF, Endo G, caspase‐3, ‐8, and ‐9, but reduced anti‐apoptotic protein Bcl‐2 and Bcl‐x in DU 145 cells. In conclusion, we may suggest that ouabain decreased cell viability and induced apoptotic cell death may via caspase‐dependent and mitochondria‐dependent pathways in human prostate cancer DU 145 cells.  相似文献   

5.
Genistein, a major isoflavone compound in soybeans, has been shown to have biological activities including anti‐cancer activates. In the present, we investigated the anti‐leukemia activity of genistein on HL‐60 cells in vitro. The percentage of viable cell, cell cycle distribution, apoptotic cell death, reactive oxygen species (ROS), and Ca2+ production and the level of ΔΨm were measured by flow cytometric assay. Cell apoptosis and endoplasmic reticulum (ER) stress associated protein expressions were examined by Western blotting assay. Calpain 1, GRP78, and GADD153 expression were measured by confocal laser microscopy. Results indicated that genistein‐induced cell morphological changes, decreased the total viable cells, induced G2/M phase arrest and DNA damage and fragmentation (cell apoptosis) in HL‐60 cells. Genistein promoted ROS and Ca2+ productions and decreased the level of ΔΨm in HL‐60 cells. Western blotting assay demonstrated that genistein increased ER stress‐associated protein expression such as IRE‐1α, Calpain 1, GRP78, GADD153, caspase‐7, caspase‐4, and ATF‐6α at 20‐50 μM treatment and increased apoptosis associated protein expression such as pro‐apoptotic protein Bax, PARP‐cleavage, caspase‐9, and ‐3, but decreased anti‐apoptotic protein such as Bcl‐2 and Bid in HL‐60 cells. Calpain 1, GRP78, and GADD153 were increased in HL‐60 cells after exposure to 40 μM of genistein. In animal xenografted model, mice were intraperitoneally injected with genistein (0, 0.2, and 0.4 mg/kg) for 28 days and the body weight and tumor volume were recorded. Results showed that genistein did not affect the body weights but significantly reduced the tumor weight in 0.4 mg/kg genistein‐treated group. Genistein also increased the expressions of ATF‐6α, GRP78, Bax, Bad, and Bak in tumor. In conclusion, genistein decreased cell number through G2/M phase arrest and the induction of cell apoptosis through ER stress‐ and mitochondria‐dependent pathways in HL‐60 cells and suppressed tumor properties in vivo.  相似文献   

6.
Crude extract of Rheum palmatum L (CERP) has been used to treat different diseases in the Chinese population for decades. In this study, we investigated the effects of CERP on LS1034 human colorectal cancer cells in vitro and also examined possible mechanisms of cell death. Flow cytometric assays were used to measure the percentage of viable cells, cell cycle distribution including the sub‐G1 phase (apoptosis), the activities of caspase‐8, ‐9, and ‐3, reactive oxygen species (ROS) and Ca2+ levels, and mitochondrial membrane potential (ΔΨm). DNA damage, nuclei condensation, protein expression, and translocation were examined by Comet assay, 4′‐6‐diamidino‐2‐phenylindole (DAPI) staining, Western blotting, and confocal laser system microscope, respectively. CERP induced apoptosis as seen by DNA fragmentation and DAPI staining in a concentration‐ and time‐dependent manner in cancer cells. CERP was associated with an increase in the Bax/Bcl‐2 protein ratio and CERP promoted the activities of caspase‐8, ‐9, and ‐3. Both ROS and Ca2+ levels were increased by CERP but the compound decreased levels of ΔΨm in LS1034 cells. Laser confocal microscope also confirmed that CERP promoted the expressions of AIF, Endo G, cytochrome c, and GADD153 to induce apoptosis through mitochondrial‐dependent pathway. © 2013 Wiley Periodicals, Inc. Environ Toxicol 29: 969–980, 2014.  相似文献   

7.
Sulforaphane (SFN), one of the isothiocyanates, is a biologically active compound extracted from cruciferous vegetables, and has been shown to induce cytotoxic effects on many human cancer cells including human leukemia cells. However, the exact molecular mechanism and altered gene expression associated with apoptosis is unclear. In this study, we investigated SFN‐induced cytotoxic effects and whether or not they went through cell‐cycle arrest and induction of apoptosis and further examined molecular mechanism and altered gene expression in human leukemia HL‐60 cells. Cell viability, cell‐cycle distribution, sub‐G1 (apoptosis), reactive oxygen species (ROS) and Ca2+ production, levels of mitochondrial membrane potential (ΔΨm), and caspase‐3, ?8, and ?9 activities were assayed by flow cytometry. Apoptosis‐associated proteins levels and gene expressions were examined by Western blotting and cDNA microarray assays, respectively. Results indicated that SFN decreased viable cells, induced G2/M phase arrest and apoptosis based on sub‐G1 phase development. Furthermore, SFN increased ROS and Ca2+ production and decreased the levels of ΔΨm and activated caspase‐3, ?8, and ?9 activities in HL‐60 cells. SFN significantly upregulated the expression of BAX, Bid, Fas, Fas‐L, caspase‐8, Endo G, AIF, and cytochrome c, and inhibited the antiapoptotic proteins such as Bcl‐x and XIAP, that is associated with apoptosis. We also used cDNA microarray to confirm several gene expressions such as caspase ?8, ?3, ?4, ?6, and ?7 that are affected by SFN. Those results indicated that SFN induced apoptosis in HL‐60 cells via Fas‐ and mitochondria‐dependent pathways. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 311–328, 2017.  相似文献   

8.
Curcuminoids are the major natural phenolic compounds found in the rhizome of many Curcuma species. Curcuminoids consist of a mixture of curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC). Although numerous studies have shown that curcumin induced cell apoptosis in many human cancer cells, however, mechanisms of BDMC‐inhibited cell growth and ‐induced apoptosis in human lung cancer cells still remain unclear. Herein, we investigated the effect of BDMC on the cell death via the cell cycle arrest and induction of apoptosis in NCI H460 human lung cancer cells. Flow cytometry assay was used to measure viable cells, cell cycle distribution, the productions of reactive oxygen species (ROS) and Ca2+, mitochondrial membrane potential (ΔΨm) and caspase‐3, ‐8 and ‐9 activity. DNA damage and condension were assayed by Comet assay and DAPI staining, respectively. Western blotting was used to measure the changes of cell cycle and apoptosis associated protein expressions. Results indicated that BDMC significantly induced cell death through induced S phase arrest and induced apoptosis. Moreover, DMC induced DNA damage and condension, increased ROS and Ca2+ productions and decreased the levels of ΔΨm and promoted activities caspase‐3, ‐8, and ‐9. Western blotting results showed that BDMC inhibited Cdc25A, cyclin A and E for causing S phase arrest, furthermore, promoted the expression of AIF, Endo G and PARP and the levels of Fas ligand (Fas L) and Fas were also up‐regulated. Results also indicated that BDMC increased ER stress associated protein expression such as GRP78, GADD153, IRE1α, IRE1β, ATF‐6α, ATF‐6β, and caspase‐4. Taken together, we suggest that BDMC induced cell apoptosis through multiple signal pathways such as extrinsic, intrinsic and ES tress pathway. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1899–1908, 2016.  相似文献   

9.
Leukemia is one of the major diseases causing cancer‐related deaths in the young population, and its cure rate is unsatisfying with side effects on patients. Fluorouracil (5‐FU) is currently used as an anticancer drug for leukemia patients. Casticin, a natural polymethoxyflavone, exerts anticancer activity against many human cancer cell lines in vitro, but no other reports show 5‐FU combined with casticin increased the mouse leukemia cell apoptosis in vitro. Herein, the antileukemia activity of 5‐FU combined with casticin in WEHI‐3 mouse leukemia cells was investigated in vitro. Treatment of two‐drug combination had a higher decrease in cell viability and a higher increase in apoptotic cell death, the level of DNA condensation, and the length of comet tail than that of 5‐FU or casticin treatment alone in WEHI‐3 cells. In addition, the two‐drug combination has a greater production rate of reactive oxygen species but a lower level of Ca2+ release and mitochondrial membrane potential (ΔΨm) than that of 5‐FU alone. Combined drugs also induced higher caspase‐3 and caspase‐8 activities than that of casticin alone and higher caspase‐9 activity than that of 5‐FU or casticin alone at 48 hours treatment. Furthermore, 5‐FU combined with casticin has a higher expression of Cu/Zn superoxide dismutase (SOD [Cu/Zn]) and lower catalase than that of 5‐FU or casticin treatment alone. The combined treatment has higher levels of Bax, Endo G, and cytochrome C of proapoptotic proteins than that of casticin alone and induced lower levels of B‐cell lymphoma 2 (BCL‐2) and BCL‐X of antiapoptotic proteins than that of 5‐FU or casticin only. Furthermore, the combined treatment had a higher expression of cleaved poly (ADP‐ribose) polymerase (PARP) than that of casticin only. Based on these findings, we may suggest that 5‐FU combined with casticin treatment increased apoptotic cell death in WEHI‐3 mouse leukemia cells that may undergo mitochondria and caspases signaling pathways in vitro.  相似文献   

10.
Although there have been advances in the fields of surgery, radiotherapy, and chemotherapy of tongue cancer, the cure rates are still not substantially satisfactory. Capsaicin (trans‐8‐methyl‐N‐vanillyl‐6‐nonenamide) is the major pungent ingredient of hot chili pepper and has been reported to have an antitumor effect on many human cancer cell types. The molecular mechanisms of the antitumor effect of capsaicin are not yet completely understood. Herein, we investigated whether capsaicin induces apoptosis in human tongue cancer cells. Capsaicin decreased the percentage of viable cells in a dose‐dependent manner in human tongue cancer SCC‐4 cells. In addition, capsaicin produced DNA fragmentation, decreased the DNA contents (sub‐G1 phase), and induced G0/G1 phase arrest in SCC‐4 cells. We demonstrated that capsaicin‐induced apoptosis is associated with an increase in reactive oxygen species and Ca2+ generations and a disruption of the mitochondrial transmenbrane potential (ΔΨm). Treatment with capsaicin induced a dramatic increase in caspase‐3 and ‐9 activities, as assessed by flow cytometric methods. A possible mechanism of capsaicin‐induced apoptosis is involved in the activation of caspase‐3 (one of the apoptosis‐executing enzyme). Confocal laser microscope examination also showed that capsaicin induced the releases of AIF, ATF‐4, and GADD153 from mitochondria of SCC‐4 cells. © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2012.  相似文献   

11.
Nicotine, one of the well‐known highly toxic components of cigarette smoke, causes a number of adverse health effects and diseases. Our previous study has shown that nicotine induces reactive oxygen species (ROS) in islet cell and disrupts islet cell mitochondrial membrane potential (ΔΨm). However, supplementation with folic acid and vitamin B12 were found effective against nicotine induced changes in pancreatic islet cells. But the toxicological effects and underlying mechanisms of nicotine‐induced mitochondrial dysfunction is still unknown. In this study, nicotine exposure decreases mitochondrial enzymes (pyruvate dehydrogenase, alpha‐ketoglutarate dehydrogenase, aconitase, malate dehydrogenase) activities by increasing cytosolic Ca2+ level which may contribute to increased mitochondrial ROS production by raising its flow to mitochondria. This in turn produces malondialdehyde and nitric oxide (NO) with a concomitant decrease in the activities of antioxidative enzymes and glutathione levels leading to loss of ΔΨm. Simultaneously, nicotine induces pancreatic islet cell apoptosis by modulating ΔΨm via increased cytosolic Ca2+ level, altered Bcl‐2, Bax, cytochrome c, caspase‐9, PARP expressions which were prevented by the supplementation of folic acid and vitamin B12. In conclusion, nicotine alters islet cell mitochondrial redox status, apoptotic machinery, and enzymes to cause disruption in the ΔΨm and supplementation of folic acid and vitamin B12 possibly blunted all these mitochondrial alterations. Therefore, this study may help to determine the pathophysiology of nicotine‐mediated islet cell mitochondrial dysfunction.  相似文献   

12.
13.
To investigate the effects of ellagic acid on the growth inhibition of TSGH8301 human bladder cancer cells in vitro, cells were incubated with various doses of ellagic acid for different time periods. The phase‐contrast microscope was used for examining and photographing the morphological changes in TSGH8301 cells. Flow cytometric assay was used to measure the percentage of viable cells, cell cycle distribution, apoptotic cells, ROS, mitochondrial membrane potential (ΔΨm), Ca2+, caspase‐9 and ‐3 activities in TSGH8301 cells after exposure to ellagic acid. Western blotting was used to examine the changes of cell cycle and apoptosis associated proteins levels. Results indicated that ellagic acid induced morphological changes, decreased the percentage of viable cells through the induction of G0/G1 phase arrest and apoptosis, and also showed that ellagic acid promoted ROS and Ca2+ productions and decreased the level of ΔΨm and promoted activities of caspase‐9 and ‐3. The induction of apoptosis also confirmed by annexin V staining, comet assay, DAPI staining and DNA gel electrophoresis showed that ellagic acid induced apoptosis and DNA damage in TSGH8301 cells. Western blotting assay showed that ellagic acid promoted p21, p53 and decreased CDC2 and WEE1 for leading to G0/G1 phase arrest and promoting BAD expression, AIF and Endo G, cytochrome c, caspase‐9 and ‐3 for leading to apoptosis in TSGH8301 cells. On the basis of these observations, we suggest that ellagic acid induced cytotoxic effects for causing a decrease in the percentage of viable cells via G0/G1 phase arrest and induction of apoptosis in TSGH8301 cells. © 2013 Wiley Periodicals, Inc. Environ Toxicol 29: 1262–1274, 2014.  相似文献   

14.
Prostate cancer has its highest incidence and is becoming a major concern. Many studies have shown that traditional Chinese medicine exhibited antitumor responses. Quercetin, a natural polyphenolic compound, has been shown to induce apoptosis in many human cancer cell lines. Although numerous evidences show multiple possible signaling pathways of quercetin in apoptosis, there is no report to address the role of endoplasmic reticulum (ER) stress in quercetin‐induced apoptosis in PC‐3 cells. The purpose of this study was to investigate the effects of quercetin on the induction of the apoptotic pathway in human prostate cancer PC‐3 cells. Cells were treated with quercetin for 24 and 48 h and at various doses (50–200 μM), and cell morphology and viability decreased significantly in dose‐dependent manners. Flow cytometric assay indicated that quercetin at 150 μM caused G0/G1 phase arrest (31.4–49.7%) and sub‐G1 phase cells (19.77%) for 36 h treatment and this effect is a time‐dependent manner. Western blotting analysis indicated that quercetin induces the G0/G1 phase arrest via decreasing the levels of CDK2, cyclins E, and D proteins. Quercetin also stimulated the protein expression of ATF, GRP78, and GADD153 which is a hall marker of ER stress. Furthermore, PC‐3 cells after incubation with quercetin for 48 h showed an apoptotic cell death and DNA damage which are confirmed by DAPI and Comet assays, leading to decrease the antiapoptotic Bcl‐2 protein and level of ΔΨm, and increase the proapoptotic Bax protein and the activations of caspase‐3, ‐8, and ‐9. Moreover, quercetin promoted the trafficking of AIF protein released from mitochondria to nuclei. These data suggest that quercetin may induce apoptosis by direct activation of caspase cascade through mitochondrial pathway and ER stress in PC‐3 cells. © 2012 Wiley Periodicals, Inc. Environ Toxicol 29: 428–439, 2014.  相似文献   

15.
Benzyl isothiocyanate (BITC) is one of member of the isothiocyanate family which has been shown to induce cancer cell apoptosis in many human cancer cells. In the present study, we investigated the effects of BITC on the growth of GBM 8401 human brain glioblastoma multiforms cells. Results indicated that BITC‐induced cell morphological changes decreased in the percentage of viable GBM8401 cells and these effects are dose‐dependent manners. Results from flow cytometric assay indicated that BITC induced sub‐G1 phase and induction of apoptosis of GBM 8401 cells. Furthermore, results also showed that BITC promoted the production of reactive oxygen species (ROS) and Ca2+ release, but decreased the mitochondrial membrane potential (ΔΨm) and promoted caspase‐8, ‐9, and ‐3 activates. After cells were pretreated with Z‐IETD‐FMK, Z‐LEHD‐FMK, and Z‐DEVD‐FMK (caspase‐8, ‐9, and ‐3 inhibitors, respectively) led to decrease in the activities of caspase‐8, ‐9, and ‐3 and increased the percentage of viable GBM 8401 cells that indicated which BITC induced cell apoptosis through caspase‐dependent pathways. Western blotting indicated that BITC induced Fas, Fas‐L, FADD, caspase‐8, caspase ‐3, and pro‐apoptotic protein (Bax, Bid, and Bak), but inhibited the ant‐apoptotic proteins (Bcl‐2 and Bcl‐x) in GBM 8401 cells. Furthermore, BITC increased the release of cytochrome c, AIF, and Endo G from mitochondria that led to cell apoptosis. Results also showed that BITC increased GADD153, GRP 78, XBP‐1, and ATF‐6β, IRE‐1α, IRE‐1β, Calpain 1 and 2 in GBM 8401 cells, which is associated with ER stress. Based on these observations, we may suggest that BITC‐induced apoptosis might be through Fas receptor, ROS induced ER stress, caspase‐3, and mitochondrial signaling pathways. Taken together, these molecular alterations and signaling pathways offer an insight into BITC‐caused growth inhibition and induced apoptotic cell death of GBM 8401 cells. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1751–1760, 2016.  相似文献   

16.
Prostate cancer is the most frequently diagnosed malignancy in men and the second highest contributor of male cancer mortality. The crude extract of Euphorbia formosana (CEEF) has been used for treatment of different diseases but the cytotoxic effects of CEEF on human cancer cells have not been reported. The purpose of the present experiments was to determine effects of CEEF on cell cycle distribution and induction of apoptosis in DU145 human prostate cancer cells in vitro. Contrast‐phase microscope was used for examining cell morphological changes. Flow cytometric assays were used for cell viability, cell cycle, apoptosis, reactive oxygen species, and Ca2+ production and mitochondria membrane potential (ΔΨm). Western blotting was used for examining protein expression of cell cycle and apoptosis associated proteins. Real‐time PCR was used for examining mRNA levels of caspase‐3, ‐8, and ‐9, AIF, and Endo G. Confocal laser microscope was used to examine the translocation of AIF, Endo G, and cytochrome in DU145 cells after CEEF exposure. CEEF‐induced cell morphological changes, decreased the percentage of viable cells, and induced S phase arrest and apoptosis in DU145 cells. Furthermore, CEEF promoted RAS and Ca2+ production and reduced ΔΨm levels. Real‐time QPCR confirmed that CEEF promoted the mRNA expression of caspase‐3 and ‐9, AIF and Endo G and we found that AIF and Endo G and cytochrome c were released from mitochondria. Taken together, CEEF‐induced cytotoxic effects via ROS production, induced S phase arrest and induction of apoptosis through caspase‐dependent and independent and mitochondria‐dependent pathways in DU245 cancer cells. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1600–1611, 2016.  相似文献   

17.
This research focused on a novel 7‐azaisoindigo derivative [namely N1‐(n‐butyl)‐7‐azaisoindigo, 7‐AI‐b], and investigated its molecular antitumor mechanism by exploring the means of cell death and the effects on mitochondrial function. 7‐AI‐b inhibited cancer cell proliferation in a dose‐ and time‐dependent way. The morphological and nuclei changes in H2B‐GFP‐labeled HeLa cells were observed using a live cell system. The results suggested that cell death induced by 7‐AI‐b is closely related to apoptosis. 7‐AI‐b induced release of cytochrome C from mitochondria to cytosol and activation of caspase‐3, showing that the apoptosis is mediated by the mitochondrial pathway. Furthermore, our data indicated that 7‐AI‐b triggers apoptosis through reactive oxygen species (ROS): cellular ROS levels were increased after 3 h exposure of 7‐AI‐b, which was reversed by the ROS scavenger N‐acetyl‐l ‐cysteine. As a consequence, 7‐AI‐b‐mediated cell death, mitochondrial transmembrane potential collapse and ATP level were partly blocked by N‐acetyl‐l ‐cysteine. Further study showed that 7‐AI‐b could induce mitochondrial dysfunction: collapse of the mitochondrial transmembrane potential and reduction of intracellular ATP level. In summary, the novel synthesized 7‐AI‐b was demonstrated to be effective in killing cancer cells via an ROS‐promoted and mitochondria‐ and caspase‐dependent apoptotic pathway. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The indoloquinoline, IQDMA (N′‐(11H‐indolo[3,2‐c]quinolin‐6‐yl)‐N,N‐dimethylethane‐1,2‐diamine), was identified as a novel antineoplastic agent with broad spectrum of antitumor activities against several human cancer cells. IQDMA‐induced G2/M arrest was accompanied by up‐regulation of the cyclin‐dependent kinase inhibitors (CDKIs), p21 and p27, and down‐regulation of Cdk1and Cdk2. IQDMA had no effect on the levels of cyclin A, cyclin B1, cyclin D3, or Cdc25C. IQDMA also increased apoptosis, as characterized by apoptotic body formation, increase of the sub G1 population and poly (ADP‐ribose) polymerase (PARP) cleavage. Further mechanistic analysis demonstrated that IQDMA upregulated FasL protein expression, and kinetic studies showed the sequential activation of caspases‐8, ‐3, and ‐9. Both caspase‐8 and caspase‐3 inhibitors, but not a caspase‐9‐specific inhibitor, suppressed IQDMA‐induced cell death. These molecular alterations provide an insight into IQDMA‐caused growth inhibition, G2/M arrest, and apoptotic death of K562 cells. Drug Dev. Res. 67:743–751, 2006. © 2006 Wiley‐Liss, Inc.  相似文献   

19.
Crocodile (Crocodylus siamensis) white blood cell extracts (WBCex) were examined for anticancer activity in HeLa cell lines using the MTT assay. The percentage viability of HeLa cells significantly deceased after treatment with WBCex in a dose‐ and time‐dependent manner. The IC50 dose was suggested to be approximately 225 μg/mL protein. Apoptotic cell death occurred in a time‐dependent manner based on investigation by flow cytometry using annexin V‐FITC and PI staining. DAPI nucleic acid staining indicated increased chromatin condensation. Caspase‐3, ?8 and ?9 activities also increased, suggesting the induction of the caspase‐dependent apoptotic pathway. Furthermore, the mitochondrial membrane potential (ΔΨm) of HeLa cells was lost as a result of increasing levels of Bax and reduced levels of Bcl‐2, Bcl‐XL, Bcl‐Xs, and XIAP. The decreased ΔΨm led to the release of cytochrome c and the activation of caspase‐9 and ?3. Apoptosis‐inducing factor translocated into the nuclei, and endonuclease G (Endo G) was released from the mitochondria. These results suggest that anticancer agents in WBCex can induce apoptosis in HeLa cells via both caspase‐dependent and ‐independent pathways. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 986–997, 2016.  相似文献   

20.
目的研究紫花牡荆素(casticin)诱导肝癌细胞(HCC)凋亡作用及其作用分子机制。方法体外培养人肝癌PLC/PRF/5细胞系细胞,MTT测定细胞活性;细胞凋亡ELISA检测试剂盒和碘化丙啶(PI)染色流式细胞术(FCM)检测凋亡性细胞死亡。二氯二氢荧光素二乙酯(DCFH-DA)探针标记FCM测定活性氧(ROS)生成。谷胱甘肽检测试剂盒测定细胞内谷胱甘肽(GSH)含量。结果 Casticin以剂量依赖方式抑制PLC/PRF/5细胞生长(P〈0.05)。Casticin诱导PLC/PRF/5细胞系Sub-G1细胞百分率增加(P〈0.05);并增加细胞组蛋白/DNA碎片的含量,呈浓度依赖性。Casticin降低PLC/PRF/5细胞内GSH含量(P〈0.05),但不影响胞内ROS的生成。巯基抗氧化剂,N乙酰半胱氨酸和添加外源性GSH能恢复GSH含量,并减弱casticin诱导细胞凋亡作用;而不含巯基的抗氧化剂,丁羟茴醚和甘露醇无明显作用。结论 Casticin诱导肝癌细胞凋亡涉及细胞内GSH耗竭。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号