首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
煤体变质程度和变形结构不同,其对甲烷的吸附/解吸能力及特征也不同,通过对河南典型矿区5种中高煤阶构造变形煤的等温吸附/解吸试验研究,结果表明:中-高煤阶弱脆性构造变形煤的甲烷吸附能力随着煤变质程度的增加而增大;甲烷吸附量增量随着压力升高逐渐减小趋近于0,且甲烷吸附量增量随变质程度的增加而增大。单位压力段内甲烷解吸量随压力降低呈幂函数增大趋势,且变质程度越高,单位压力段内甲烷解吸量越大。不同类型构造变形煤单位压力段解吸量随压力降低呈单调递增的对数函数,且甲烷解吸量随着构造变形程度的增强而增大。  相似文献   

2.
本文采用量子化学计算方法MP2,主要研究了不同煤阶煤基对CO2分子的吸附势能,发现随着煤基直径的增大,即煤阶的增高,煤基对CO2分子的吸附作用也逐渐增大,结合前期研究,对影响不同煤阶煤吸附CO2的等温吸附实验现象进行了机理解释。本文研究成果为ECBM技术及CO2在深部煤层中的掩埋技术提供了一定的理论支撑。  相似文献   

3.
为建立煤的吸附特性与表面能的定量关系,利用悬滴法恒温27℃测试不同浓度下的APG(烷基糖苷)溶液表面张力,以及利用躺滴法测试临界胶束浓度下APG溶液在煤表面的平衡接触角,进而计算出煤的表面能。研究结果表明:APG溶液在煤表面形成的接触角远小于水在煤表面形成的接触角,同时随着煤变质程度的提高呈现先增大后减小的趋势,这是APG分子与煤之间分子间作用力及煤表面疏水官能团联合控制的结果;随着煤样变质程度的提高,煤的表面能与吸附常数a皆呈现先减小后增大的趋势;表面能随吸附常数a的增大较好的服从指数函数变化规律,根据回归模型,煤的表面能最后趋近于35.63 m N/m。  相似文献   

4.
《煤矿安全》2013,(11):12-14
煤的大分子结构主要受煤变质变形2个方面因素的影响,变质程度相同而变形性质和变形程度不同,其大分子结构特征也不一样。通过对17个不同变质变形程度脆性变形煤的XRD实验研究,结果表明,随变质变形程度增加,衍射峰变得更加尖锐,衍射角逐渐增加。Lc和Nc随煤变质程度增加而增大,且强脆性变形煤比弱脆性变形煤大。La随煤变质程度增加而增大,但在中高变质阶段以后强脆性变形煤比弱脆性变形煤明显大一些。La/Lc的值随煤变质程度增加表现出先减小后增大的过程。  相似文献   

5.
为分析溶剂萃取前后煤吸附甲烷气体的特征差异,采用四氢呋喃溶剂对不同地区不同变质程度的4个煤样(长焰煤、气煤、焦煤、无烟煤)进行了萃取试验,并对原煤和萃取后煤样进行了低温液氮吸附试验和甲烷等温吸附试验,同时对萃取物进行了气相色谱-质谱分析.结果表明,平衡水分条件下原煤对甲烷的吸附量要高于萃取后的煤,干燥条件下萃取后的煤对甲烷的吸附量要高于原煤.通过综合分析,指出煤的变质程度、孔隙结构和水分是造成不同煤阶煤萃取前后吸附差异的主要因素,由此进一步探讨了溶剂萃取前后煤中芳香结构与脂肪类化合物对煤吸附气体的综合影响.  相似文献   

6.
卫浩 《煤》2019,(5)
为明晰经验公式对不同变质程度煤的瓦斯解吸规律的适用性,通过对不同变质程度、不同吸附平衡压力下的解吸数据进行分析。结果表明:对于同一变质程度的煤,煤的瓦斯解吸量随时间的增加累积增加,随着吸附平衡压力的增大,煤的瓦斯解吸量逐渐增大;在同一吸附平衡压力下,随着变质程度的增加,煤的瓦斯解吸量逐渐增加;孙重旭式可用于描述不同吸附平衡压力下、不同变质程度煤瓦斯解吸规律,为研究煤层瓦斯的运移奠定理论基础。  相似文献   

7.
通过对采自华北9个矿区10块煤岩样品进行了镜质组反射率测定、显微组分分析、比表面积测试、显微裂隙统计和甲烷等温吸附试验,分析了不同变质程度煤的物性特征,并结合华北煤的变质背景,探讨了其物性差异的形成原因。研究发现,煤的变质程度和变质类型影响煤的显微组构、孔隙结构和裂隙演化规律,这是造成煤物性差异的主要原因。微观分析表明,煤在不同的变质阶段,其大分子结构发生一系列变化,造成煤的比表面积和吸附能力的大小呈现规律性的变化。  相似文献   

8.
瓦斯气体主要以游离和吸附态存在于煤中已成为人们的共识。但是关于瓦斯的赋存位置及具体方式分歧很大,尚无统一的解释,本文对此进行了分析。结论表明:瓦斯在较大压力下,能够楔开或进入到与瓦斯气体分子尺度相当的微裂隙,并以固溶体的形式存在而不易脱附;煤中甲烷在较大压力下虽不发生毛细凝结现象,但能以准液态的紧密单分子膜存在于煤孔隙表面;不同气体的吸附性不同,这除与该种气体分子和固体分子间的作用力不同有关外,还与该种气体分子的热运动剧烈程度有关。  相似文献   

9.
为研究煤的变质程度对瓦斯吸附特性的影响,在已有研究成果的基础上,采用长焰煤、气煤和无烟煤干燥煤样进行等温吸附试验,通过压汞试验得到孔隙结构和连通性特征,研究了煤的孔隙发育特征对瓦斯吸附能力的控制作用,并从煤的大分子结构、平衡水分含量、显微组分3个因素出发阐述了煤的变质程度对瓦斯吸附能力的影响。结果表明,煤的孔隙发育特征、大分子结构、平衡水分含量、显微组分等因素综合影响瓦斯吸附能力,其中煤的孔隙发育特征起主控作用,不同变质程度煤的吸附能力与孔隙结构特征变化规律一致,煤的大分子结构通过改变有效比表面积、煤分子结构与甲烷分子的吸附作用以及水分含量影响吸附能力,平衡水分含量和显微组分主要通过改变比表面积影响吸附能力。  相似文献   

10.
采用蒙特卡洛方法模拟计算了高岭石吸附甲烷的吸附能和范德华能及其随孔隙压力和含水量的变化规律,分析了高岭石吸附甲烷的微观机理。结果表明:随着孔隙压力的增大,高岭石吸附甲烷的范德华能和吸附能均呈先增大后趋于平衡的规律,符合Langmuir模型;随着含水量的增大,高岭石吸附甲烷的吸附能呈线性规律降低。高岭石中的水分子以氧原子端靠近高岭石孔壁表面、氢原子端远离孔壁表面的方式吸附,并占据了高岭石吸附甲烷的空间;高岭石对甲烷分子的吸附是典型的物理吸附,对水分子的吸附是物理与化学吸附并存;孔隙压力和含水量影响高岭石和甲烷分子间的距离,进而影响了高岭石和甲烷分子间范德华能的大小。研究结果从微观角度揭示了在松软低渗透煤层条件下,将水力压裂和卸压钻孔置于煤层顶底板岩层中,在富含黏土矿物的岩层中实施水力压裂和卸压有利于释放煤层气,为实现煤及其顶底板岩层中煤系气的一体化强化开采奠定了微观理论基础。  相似文献   

11.
为了提高低阶煤的疏水性和可浮性,实现低阶煤的高效浮选提质,本研究用3种不同类别的表面活性剂(CTAB、SDS和Span-80)对平朔长焰煤和胜利褐煤煤样进行改性处理,采用离子交换法测定改性前后煤样中含氧官能团的含量,测定了各煤样在气泡上的吸附概率,并对表面活性剂改性低阶煤的规律和机理进行了分析,认为含氧官能团含量是影响煤的疏水性和可浮性的重要因素,通过表面活性剂改性可以对低阶煤表面的含氧官能团产生有效的掩蔽作用,提高低阶煤的疏水性,促进其在气泡上的吸附;氢键对表面活性剂在低阶煤表面的吸附起最主要的作用,表面活性剂极性端官能团的种类及其与煤中含氧官能团之间的氢键作用强弱对表面活性剂的改性效果起决定性作用。  相似文献   

12.
查明酸液对不同煤阶煤的酸化效果,能够为提高煤储层导流能力提供一种化学方法。通过对不同煤阶煤样酸化前后煤表面观察、矿物质含量和渗透率测试,得出不同煤阶煤酸化后表面变化特征、矿物质含量变化及渗透率变化规律。结果表明:多组分酸能与煤中的矿物质发生反应,提高煤储层的导流能力。煤中原始裂隙发育程度及矿物质的含量共同影响着增透效果;酸化使煤中的碳酸盐矿物和硫化物减少最多,其次是蒙脱石、绿泥石和伊利石,石英和高岭石减少最少;煤体裂隙越发育,与酸液反应的碳酸盐和硫化物含量越高,酸化增透效果越好。研究结果为多组分酸在煤储层水力压裂中的应用提供了实验支撑。  相似文献   

13.
煤与瓦斯突出过程中超量煤层气的产生一直是煤地质学界十分关注的重要问题。通过对近年来国内有关煤的次高温高压实验以及热解实验进行系统地调研,结合力化学研究成果,提出新的认识。研究表明在应力的作用下煤的化学结构会发生变化,侧链和官能团脱落,从而产生气体,对比前人的研究成果发现相同煤级的煤在变形实验和热解实验中会产生不同的气体。力化学研究指出,力的作用不仅可以破坏高分子聚合物的结构,使之产生降解,还可以改变化学反应的途径产生新的物质。因此认为,煤的次高温高压变形实验与煤的热解实验,相同煤级的煤在两个实验下产生的气体不同,可能是由于不同化学键对力和热的敏感程度不同,力的作用改变了化学反应的途径所致。  相似文献   

14.
基于岩相因子的煤粉燃烧预测模型   总被引:3,自引:1,他引:3  
胡军  孔凡朔 《煤炭学报》2004,29(2):213-215
对30种煤的煤阶、煤岩组分及燃烧性进行了研究,根据非线性规划理论及实验结果提出了基于岩相因子的煤粉燃烧预测模型。该模型考虑了煤阶、显微组分及矿物质对煤燃烧的综合影响、研究表明:煤的燃烧特性与岩相因子有很好的线性相关性。  相似文献   

15.
我国西部弱还原程度煤分布及煤质特征研究   总被引:6,自引:1,他引:5       下载免费PDF全文
以详实的原始测试数据为资料,分析了我国西部弱还原程度煤的煤岩、煤质总体特征.研究表明,与同变质程度的其它地区煤相比,西北侏罗纪弱还原程度煤中惰质组及过渡组分含量较高,导致其挥发分产率较低,氢含量低、氧含量相对较高,黏结性较弱,煤种以不黏煤和弱黏煤为主.沉积环境的弱还原程度主要对中低变质程度烟煤的性质有明显影响.  相似文献   

16.
郝宗超  张小东  杨燕青  孙飞扬 《煤炭学报》2018,43(10):2903-1910
为了探讨溶剂萃取过程中不同煤级煤的小分子化合物溶出行为及其机制,以四氢呋喃(THF)为溶剂,对褐煤、长焰煤、肥煤、贫煤和无烟煤进行了分次索氏萃取,借助于柱层析法和气相色谱-质谱联用仪(GC-MS),分析了不同分馏时间段各类煤的萃取率、族组成和化学组成的差异及其实质。结果表明:煤的萃取过程可划分为2个阶段,其中第Ⅰ阶段萃取速率远大于第Ⅱ阶段;相比于第Ⅰ阶段,第Ⅱ阶段的萃取物中烃类含量较低,非烃类含量较高;除了褐煤以外,随着萃取时间的增加,其他煤的萃取物中化合物的种类逐渐减少;各类煤的萃取物中,杂环化合物含量高且种类多,相比而言芳烃在中级烟煤萃取物中含量较高,而脂肪烃中长链烷烃在中低级煤萃取物中含量较大。  相似文献   

17.
线弹性断裂力学作为一种十分成功的断裂理论框架,已被广泛地应用于表征固体材料中裂纹扩展行为。对于线弹性岩石断裂力学来说,岩石一般被简化为脆性材料,相对于裂纹尺寸及试件尺寸,其裂纹尖端前断裂过程区(Fracture process zone,FPZ)范围很小可以被忽略。而另一方面,煤的破坏形式通常表现为韧性破坏,即其应力峰值后存在明显的应变软化区。对于这种韧性材料,其断裂过程区尺寸范围相对较大且会对材料的断裂行为产生很大的影响,因此线弹性断裂理论不再适用于描述煤体中裂纹扩展。而黏聚型模型(Cohesive zone model,CZM)被证明是一种有效的理论工具,能够描述韧性材料断裂过程区中的断裂行为。在该黏聚型本构模型理论中,裂纹尖端前的断裂过程区被简化为一条闭合的裂纹或闭合的裂纹面(分别对应二维及三维情况),其中断裂过程区内非线性断裂行为通过黏聚力与相对位移之间的本构关系进行表征。通过对煤进行圆盘形紧凑拉伸试验建立了不同煤阶煤(其中包括弱黏煤、气煤、肥煤、贫瘦煤及无烟煤)的黏聚型裂纹本构关系,试验结果表明,随着煤试件煤阶的升高,其初始刚度及峰值载荷逐渐升高,最大张开位移逐渐降低,试验峰后软化阶段载荷-CTOD曲线趋于线性变化且破坏形式逐渐趋于脆性破坏。采用Karihaloo多项式黏聚型本构方程对5种煤阶煤软化曲线进行拟合,得到煤体中黏聚型裂纹模型本构关系的一般形式。针对煤层松软的力学特性和韧性破坏特征,建立了基于黏聚型裂纹本构关系的煤岩水力压裂多场耦合方程组,包括多孔介质变形方程、孔隙渗流方程、裂隙渗流方程及Karihaloo多项式本构关系方程。并采用包含裂隙流水压自由度的黏聚型界面单元法进行数值模拟。结合大型真三轴水力压裂实验,验证所得煤岩水力压裂模型的正确性;根据数值模拟和物理实验结果,讨论了煤岩松软的力学特性及其裂纹尖端过程区对水力压裂的影响。  相似文献   

18.
秦勇  姜波 《煤炭学报》1998,23(6):634-638
采用^13CNMR方法,研究了我国高煤级煤系列样品的碳结构及其演化特征,进而结合电子顺磁共振测试成果对演经的地球化学机理进行了探讨。研究了表明:高煤级煤碳结构显阶跃式和阶段性演化,拼叠作用可能是高煤级煤中-后期阶段煤化作用进展的主要地球化学机理。  相似文献   

19.
在沉降炉上开展了无烟煤、贫煤、烟煤、褐煤以及不同配比(25%,50%,75%)下混煤燃烧特性实验,研究了"炉外"和"炉内"两种掺烧方式下煤种对混煤燃尽及NO_x排放特性的影响。结果表明,不同煤种掺混燃烧时促进和抑制两种交互作用具有差异性。"炉外"掺烧方式下,挥发分含量差异较大的煤掺混时,交互作用明显;尤其是掺烧75%高挥发分煤时,对燃尽抑制作用表现最为显著,混煤的燃尽降低;挥发分含量差异较小的煤掺混时,交互作用相对较小,混煤的燃尽率在各掺混比例下基本接近计算线性燃尽率;混煤燃烧的NO_x排放特性随挥发分较高的煤的掺混比例增加基本呈线性变化的规律。"炉内"掺烧方式下,随两种煤延迟混合时间的增加,交互作用逐渐减弱,各单煤的燃烧独立性增强,混煤燃尽率逐渐接近计算线性燃尽率;挥发分含量差异较大的煤掺混时,改变混合时间,混煤燃尽率变化显著,挥发分含量差异较小的煤掺混时,各单煤燃烧独立性较强,改变混合时间,混煤燃尽率变化不明显;混煤NO_x排放量随延迟混合时间的增加而逐渐降低。  相似文献   

20.
申峻  王志忠 《煤炭学报》2007,32(6):626-629
用SORPTOMATIC1990吸附仪研究了6种不同煤阶煤(包括无烟煤、贫瘦煤、焦煤、肥煤、弱黏煤、气煤)在3 ℃/min升温速率到1 000 ℃的炭化过程中孔容和孔径随温度的变化规律,并用Bio-rad FTS-165裂解红外测定了各种煤在10 ℃/min升温速率的炭化过程中挥发分的组成及各自的释放温度范围.结果表明:不同变质程度煤在裂解过程中,可挥发性芳香物生成量的大小排序为肥煤>焦煤>瘦煤>气煤,且肥煤芳环上的取代基最多,而弱黏煤和无烟煤生成可挥发性芳香物的量最少.煤阶越低,释放CO2的温度越低,生成的量越多.1 000 ℃生成焦炭的孔容大小排列为:肥煤C1>弱黏煤D1>焦煤B1>无烟煤YQ,比表面积大小排列为C1YQ,B1>D1,平均孔半径大小的排列为:D1B1>YQ>C1.在炭化过程中,C1肥煤的孔容和比表面积变化最剧烈,YQ煤变化最小.C1煤生成焦炭表面积最大为20 m2/g,其它煤成焦表面积3 m2/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号