首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A regional soil and sediment geochemical study in northern California   总被引:7,自引:7,他引:0  
Regional-scale variations in soil geochemistry were investigated in a 20,000-km2 study area in northern California that includes the western slope of the Sierra Nevada, the southern Sacramento Valley and the northern Coast Ranges. Over 1300 archival soil samples collected from the late 1970s to 1980 in El Dorado, Placer, Sutter, Sacramento, Yolo and Solano counties were analyzed for 42 elements by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry following a near-total dissolution. These data were supplemented by analysis of more than 500 stream-sediment samples from higher elevations in the Sierra Nevada from the same study site. The relatively high-density data (1 sample per 15 km2 for much of the study area) allows the delineation of regional geochemical patterns and the identification of processes that produced these patterns. The geochemical results segregate broadly into distinct element groupings whose distribution reflects the interplay of geologic, hydrologic, geomorphic and anthropogenic factors. One such group includes elements associated with mafic and ultramafic rocks including Cr, Ni, V, Co, Cu and Mg. Using Cr as an example, elevated concentrations occur in soils overlying ultramafic rocks in the foothills of the Sierra Nevada (median Cr = 160 mg/kg) as well as in the northern Coast Ranges. Low concentrations of these elements occur in soils located further upslope in the Sierra Nevada overlying Tertiary volcanic, metasedimentary and plutonic rocks (granodiorite and diorite). Eastern Sacramento Valley soil samples, defined as those located east of the Sacramento River, are lower in Cr (median Cr = 84 mg/kg), and are systematically lower in this suite compared to soils from the west side of the Sacramento Valley (median Cr = 130 mg/kg). A second group of elements showing a coherent pattern, including Ca, K, Sr and REE, is derived from relatively silicic rocks types. This group occurs at elevated concentrations in soils overlying volcanic and plutonic rocks at higher elevations in the Sierras (e.g. median La = 28 mg/kg) and the east side of the Sacramento Valley (median 20 mg/kg) compared to soils overlying ultramafic rocks in the Sierra Nevada foothills (median 15 mg/kg) and the western Sacramento Valley (median 14 mg/kg). The segregation of soil geochemistry into distinctive groupings across the Sacramento River arises from the former presence of a natural levee (now replaced by an artificial one) along the banks of the river. This levee has been a barrier to sediment transport. Sediment transport to the Valley by glacial outwash from higher elevations in the Sierra Nevada and, more recently, debris from placer Au mining has dominated sediment transport to the eastern Valley. High content of mafic elements (and low content of silicic elements) in surface soil in the west side of the valley is due to a combination of lack of silicic source rocks, transport of ultramafic rock material from the Coast Ranges, and input of sediment from the late Mesozoic Great Valley Group, which is itself enriched in mafic elements. A third group of elements (Zn, Cd, As and Cu) reflect the impact of mining activity. Soil with elevated content of these elements occurs along the Sacramento River in both levee and adjacent flood basin settings. It is interpreted that transport of sediment down the Sacramento River from massive sulfide mines in the Klamath Mountains to the north has caused this pattern. The Pb, and to some extent Zn, distribution patterns are strongly impacted by anthropogenic inputs. Elevated Pb content is localized in major cites and along major highways due to inputs from leaded gasoline. Zinc has a similar distribution pattern but the source is tire wear.  相似文献   

2.
A regional-scale soil geochemical study was conducted within a 22,000 km2 area in northern California including the Sierra Nevada, Sacramento Valley, and northern Coast Range. Over 1300 soil samples were chemically analyzed for 42 elements. The distribution of distinct groups of elements demonstrates the interplay of geologic, hydrologic, geomorphologic and anthropogenic factors; however, it is difficult to fully appreciate the complexity of geochemical transport and weathering processes on a landscape-scale in an area of very complex geology with such a large dataset containing more than 40 variables. To examine the data from a perspective of multi-element groupings, cluster analyses were applied to the dataset. The analysis identified several groups of elements whose spatial patterns could be related to specific geologic sources.  相似文献   

3.
Regional patterns in ground- and surface-water chemistry of the southern Sacramento Valley in California were evaluated using publicly available geochemical data from the US Geological Survey’s National Water Information System (NWIS). Within the boundaries of the study area, more than 2300 ground-water analyses and more than 20,000 surface-water analyses were available. Ground-waters from the west side of the Sacramento Valley contain greater concentrations of Na, Ca, Mg, B, Cl and SO4, while the east-side ground-waters contain greater concentrations of silica and K. These differences result from variations in surface-water chemistry as well as from chemical reactions between water and aquifer materials. Sediments that fill the Sacramento Valley were derived from highlands to the west (the Coast Ranges) and east (the Sierra Nevada Mountains), the former having an oceanic provenance and the latter continental. These geologic differences are at least in part responsible for the observed patterns in ground-water chemistry. Thermal springs that are common along the west side of the Sacramento Valley appear to have an effect on surface-water chemistry, which in turn may affect the ground-water chemistry.  相似文献   

4.
5.
There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid urban and industrial development in the last decade in India. Therefore, an attempt was made to investigate the pollution caused due to excessive accumulation of heavy metals in soils near Thane–Belapur industrial belt of Mumbai. Soil samples were collected from surrounding industrial areas and were analyzed for toxic/heavy metals by X-ray fluorescence spectrometer. The analytical results indicate that the soils in the study area were enriched with Cu, Cr, Co, Ni and Zn. The concentration ranges were: Cu 3.10–271.2 mg/kg (average 104.6 mg/kg), Cr 177.9–1,039 mg/kg (average 521.3 mg/kg), Co 44.8–101.6 mg/kg (average 68.7 mg/kg), Ni 64.4–537.8 mg/kg (average 183.6 mg/kg) and Zn 96.6–763.2 mg/kg (average 191.3 mg/kg). The visualization of spatial data is made by preparing distribution maps of heavy metal concentration in soils and co-relation diagrams. These results highlight the need for instituting a systematic and continuous monitoring of the study area for heavy metals and other forms of pollution to ensure that pollution does not become a serious problem in future.  相似文献   

6.
Chromium ore was treated to produce ferrochromium from 1979 until 2000 in a smelter in Burrel, 35 km NE of Tirana (Albania). As a consequence, large amounts of solid waste, i.e. slags (about 9.106 m3) have been disposed next to the smelter, disfiguring the landscape. In an attempt to define contaminated sites, heavy metal content of the different sampling media have been compared with respective background samples.In the study area, the determination of background values in soil samples is complicated due to the different geological substrates. Cr and Ni background concentrations in serpentinite-derived soils, west of the smelting plant, are markedly higher than in the Pliocene gravel/sandy soils, where the smelter is situated (Cr 2147 and 193 mg/kg, respectively; Ni 2356 and 264 mg/kg). These values are clearly lower than those encountered around the smelter. Average total Cr and Ni concentrations in soils around the smelter are 3117 and 1243 mg/kg, respectively. The highest concentrations of Cr (up to 2.3 wt.%), were recorded in samples taken near the smelting compartment within the industrial plant and next to the slags clearly indicating that the smelter forms a point source of Cr contamination. The Cr / Fe ratio is the best indicator to differentiate non-polluted (Cr / Fe Serpentinite soil: 130–390; Pliocene soils: < 130) from polluted areas (> 390 smelting nearby of the slags).Cr and Ni values for local backgrounds in stream and overbank sediments were taken in the Mat river 6 km upstream and to the east of the smelter (268 and 430 mg/kg for Cr, and 306 and 604 mg/kg for Ni, respectively). Equivalent sediments taken from the Zalli i Germanit river, which drains the smelter area are respectively 816 and 1126 mg/kg for Cr and 1115 and 1185 mg/kg for Ni.Dust samples, taken from the lofts of houses up to 2 km from the smelter, display high concentrations of Cr, Ni and Zn (average contents of 2899, 436 and 902 mg/kg, respectively). The later concentrations in the dust samples have been confirmed by mineralogical analysis where Cr-bearing mineral phases such as ferrochromium and chromium oxides, clearly relate to the activity of the smelter. Consequently, atmospheric deposition of dust particles forms a serious problem and can also be responsible for the elevated contents encountered in soil samples around the smelter.All these data show that the degree of contamination caused by industrial activity of the Burrel Cr-smelter is severe, although no Cr(VI) was detected in soil water extractions nor in the surface or groundwater where concentrations were < 0.01 mg/kg.  相似文献   

7.
This review of geological, seismological, geochronological and paleobotanical data is made to compare historic and geologic rates and styles of deformation of the Sierra Nevada and western Basin and Range Provinces. The main uplift of this region began about 17 m.y. ago, with slow uplift of the central Sierra Nevada summit region at rates estimated at about 0.012 mm/yr and of western Basin and Range Province at about 0.01 mm/yr. Many Mesozoic faults of the Foothills fault system were reactivated with normal slip in mid-Tertiary time and have continued to be active with slow slip rates. Sparse data indicate acceleration of rates of uplift and faulting during the Late Cenozoic. The Basin and Range faulting appears to have extended westward during this period with a reduction in width of the Sierra Nevada.The eastern boundary zone of the Sierra Nevada has an irregular en-echelon pattern of normal and right-oblique faults. The area between the Sierra Nevada and the Walker Lane is a complex zone of irregular patterns of hörst and graben blocks and conjugate normal-to right- and left-slip faults of NW and NE trend, respectively. The Walker Lane has at least five main strands near Walker Lake, with total right-slip separation estimated at 48 km. The NE-trending left-slip faults are much shorter than the Walker Lane fault zone and have maximum separations of no more than a few kilometers. Examples include the 1948 and 1966 fault zone northeast of Truckee, California, the Olinghouse fault (Part III) and possibly the almost 200-km-long Carson Lineament.Historic geologic evidence of faulting, seismologic evidence for focal mechanisms, geodetic measurements and strain measurements confirm continued regional uplift and tilting of the Sierra Nevada, with minor internal local faulting and deformation, smaller uplift of the western Basin and Range Province, conjugate focal mechanisms for faults of diverse orientations and types, and a NS to NE—SW compression axis (σ1) and an EW to NW—SE extension axis (σ3).  相似文献   

8.
This study presents Sr and Pb isotopic ratios and Rb, Sr, U, Th, and Pb concentrations of an ultrapotassic basaltic suite and related rocks from the central Sierra Nevada, California. The ultrapotassic suite yields a narrow range of Sr and Pb isotopic compositions (87Sr/86Sr=0.70597–0.70653; 206Pb/ 204Pb=18.862–19.018; 207Pb/204Pb=15.640–15.686; 208Pb/ 204Pb=38.833–38.950). Associated basalts containing ultramafic nodules have less radiogenic Sr (87Sr/86=0.70430–0.70521) and generally higher Rb/Sr ratios than the ultrapotassic suite. Leucitites from Deep Springs Valley, California, contain high 87Sr/86Sr (71141–0.71240) and low 206Pb/204Pb (17.169–17.234) ratios, reflecting contamination by crustal granulite.The isotopic relationships support an origin of the ultrapotassic basaltic suite by partial melting of an enriched upper mantle source. Dehydration of a gently inclined oceanic slab beneath the Sierra Nevada may have provided Ba, K, Rb, Sr, and H2O, which migrated into the overlying upper mantle lithosphere. The end of subduction 10 m.y. ago allowed increased asthenospheric heat flow into the upper mantle lithosphere. The increased heat flow enhanced fluid movement in the upper mantle and contributed towards isotopic homogenization of the upper mantle source areas. Continued heating of the enriched upper mantle caused partial melting and subsequent eruption of the ultrapotassic lavas.  相似文献   

9.
At the western edge of the Basin and Range Province, the Owens Valley is the site of active seismicity and deformation. Morphometric analyses of three geomorphological features are used to determine the patterns and rates of neotectonic deformation: (l) a network of Pleistocene channels cut on top of the Bishop Tuff; (2) uplifted terraces of the Owens River; and (3) alluvial fans of the White Mountain front.In the Owens Valley, the three analyses are consistent with the same solution: net eastward tilt of the Owens Valley block at a rate of between 3.5 and 6.1°/Ma. Given the dip on the basement determined from geophysical data and extrapolating the rate of tilt in the Owens Valley back in time, it is inferred that the break-up of the Sierra Nevada and the northern Owens Valley occurred in the Pliocene, between around 2 and 4 Ma ago. The pattern of deformation in the northern Owens Valley matches anticlinal flexure on the Coyote warp, near the front of the Sierra Nevada, and faulting across the Volcanic Tableland is consistent with flexural extension. It is proposed that the Coyote warp is an expression of the tectonic hinge between westward rotation of the Sierra Nevada and eastward rotation of the Owens Valley since the Pliocene.  相似文献   

10.
Over 20 lamprophyre dykes, varying in width between a few centimeters and several meters, have been identified in central Sierra Norte – Eastern Pampean Ranges, Córdoba, Argentina. Their mineralogy and chemistry indicate that they are part of the calc-alkaline lamprophyres clan (CAL). They contain phenocrysts of magnesiohornblende ± augite set in a groundmass of magnesiohornblende, calcic-plagioclase, alkali feldspar, and opaque minerals, which designate them as spessartite-type lamprophyres. Alteration products include chlorite, calcite and iron oxides after mafic phenocrysts, though some are partially replaced by actinolite. Feldspars are replaced by carbonate and clay minerals.The dykes are relatively primitive, and show restricted major element variation (SiO2 51.1–55.3 wt.%, Al2O3 12–16.6 wt.%, total alkalies 1.5–4.7 wt.%), high Mg# (55–77), high Cr contents (27–988 ppm) and moderate to high Ni contents (60–190 ppm). Lamprophyre LILE (e.g. Rb averages 110 ppm, Sr 211–387 ppm, Ba 203–452 ppm) are high relative to HFSE (e.g., Ta 0.2–1.6 ppm, Nb 4–11 ppm, Y 17–21 ppm), and are enriched in LREE (30–70 times chondrite). They are characterized by relatively high 208Pb/204Pb (38.8–39.9), 207Pb/204Pb (15.7), and 206Pb/204Pb (18.7–20.1), combined with low (epsilon)εNd (−4.69 to −1.52) and a relative moderately high (87Sr/86Sr)i of 0.7055–0.7074. The Rb–Sr whole rock isochron indicates an Early Ordovician age of 485 ± 25 Ma. The calculated TDM (1.7 Ga) suggests that these rocks appear to have originated from a reservoir that was created during a mantle metasomatism event related to the Pampean orogeny.The Sierra Norte lamprophyres show affinities with a subduction-related magma in an active continental margin. Their geochemical and isotopic features suggest a multicomponent source, composed of enriched mantle material variably contaminated by crustal components. The lamprophyric suite emplacement occurred at the dawning stage of the Pampean orogeny, in a regional post-collisional extensional setting developed in the Sierra Norte-Ambargasta batholith (SNAB) in Early Ordovician times.  相似文献   

11.
We present here the first available estimations of chemical weathering and associated atmospheric CO2 consumption rates as well as mechanical erosion rate for the Lesser Antilles. The chemical weathering (100–120 t/km2/year) and CO2 consumption (1.1–1.4 × 106 mol/km2/year) rates are calculated after subtraction of the atmospheric and hydrothermal inputs in the chemical composition of the river dissolved loads. These rates thus reflect only the low-temperature basalt weathering. Mechanical erosion rates (approx. 800–4000 t/km2/year) are estimated by a geochemical mass balance between the dissolved and solid loads and mean unaltered rock. The calculated chemical weathering rates and associated atmospheric CO2 consumption rates are among the highest values worldwide but are still lower than those of other tropical volcanic islands and do not fit with the HCO3 concentration vs. 1/T correlation proposed by Dessert et al. (2001). The thick soils and explosive volcanism context of the Lesser Antilles are the two possible keys to this different weathering behaviour; the development of thick soils limits the chemical weathering and the presence of very porous pyroclastic flows allows an important water infiltration and thus subsurface weathering mechanisms, which are less effective for atmospheric CO2 consumption.  相似文献   

12.
Historic Hg mining in the Cache Creek watershed in the Central California Coast Range has contributed to the downstream transport of Hg to the San Francisco Bay-Delta. Different aspects of Hg mobilization in soils, including pedogenesis, fluvial redistribution of sediment, volatilization and eolian transport were considered. The greatest soil concentrations (>30 mg Hg kg−1) in Cache Creek are associated with mineralized serpentinite, the host rock for Hg deposits. Upland soils with non-mineralized serpentine and sedimentary parent material also had elevated concentrations (0.9–3.7 mg Hg kg−1) relative to the average concentration in the region and throughout the conterminous United States (0.06 mg kg−1). Erosion of soil and destabilized rock and mobilization of tailings and calcines into surrounding streams have contributed to Hg-rich alluvial soil forming in wetlands and floodplains. The concentration of Hg in floodplain sediment shows sediment dispersion from low-order catchments (5.6–9.6 mg Hg kg−1 in Sulphur Creek; 0.5–61 mg Hg kg−1 in Davis Creek) to Cache Creek (0.1–0.4 mg Hg kg−1). These sediments, deposited onto the floodplain during high-flow storm events, yield elevated Hg concentrations (0.2–55 mg Hg kg−1) in alluvial soils in upland watersheds. Alluvial soils within the Cache Creek watershed accumulate Hg from upstream mining areas, with concentrations between 0.06 and 0.22 mg Hg kg−1 measured in soils 90 km downstream from Hg mining areas. Alluvial soils have accumulated Hg released through historic mining activities, remobilizing this Hg to streams as the soils erode.  相似文献   

13.
In 2004, soils were collected at 220 sites along two transects across the USA and Canada as a pilot study for a planned soil geochemical survey of North America (North American Soil Geochemical Landscapes Project). The objective of the current study was to examine the potential of diffuse reflectance (DR) Fourier Transform (FT) mid-infrared (mid-IR) and near-infrared (NIRS) spectroscopy to reduce the need for conventional analysis for the determination of major and trace elements in such continental-scale surveys. Soil samples (n = 720) were collected from two transects (east–west across the USA, and north–south from Manitoba, Canada to El Paso, Texas (USA), n = 453 and 267, respectively). The samples came from 19 USA states and the province of Manitoba in Canada. They represented 31 types of land use (e.g., national forest, rangeland, etc.), and 123 different land covers (e.g., soybeans, oak forest, etc.). The samples represented a combination of depth-based sampling (0–5 cm) and horizon-based sampling (O, A and C horizons) with 123 different depths identified. The set was very diverse with few samples similar in land use, land cover, etc. All samples were analyzed by conventional means for the near-total concentration of 49 analytes (Ctotal, Ccarbonate and Corganic, and 46 major and trace elements). Spectra were obtained using dried, ground samples using a Digilab FTS-7000 FT spectrometer in the mid- (4000–400 cm−1) and near-infrared (10,000–4000 cm−1) at 4 cm−1 resolution (64 co-added scans per spectrum) using a Pike AutoDIFF DR autosampler. Partial least squares calibrations were develop using: (1) all samples as a calibration set; (2) samples evenly divided into calibration and validation sets based on spectral diversity; and (3) samples divided to have matching analyte concentrations in calibration and validation sets. In general, results supported the conclusion that neither mid-IR nor NIRS would be particularly useful in reducing the need for conventional analysis of soils from this continental-scale geochemical survey. The extreme sample diversity, likely caused by the widely varied parent material, land use at the site of collection (e.g., grazing, recreation, agriculture, etc.), and climate resulted in poor calibrations even for Ctotal, Corganic and Ccarbonate. The results indicated potential for mid-IR and NIRS to differentiate soils containing high concentrations (>100 mg/kg) of some metals (e.g., Co, Cr, Ni) from low-level samples (<50 mg/kg). However, because of the small number of high-level samples, it is possible that differentiation was based on factors other than metal concentration. Results for Mg and Sr were good, but results for other metals examined were fair to poor, at best. In essence, it appears that the great variation in chemical and physical properties seen in soils from this continental-scale survey resulted in each sample being virtually unique. Thus, suitable spectroscopic calibrations were generally not possible.  相似文献   

14.
In this study, an assessment of the lithogenic concentrations of trace metals in soils and saprolite over basement rock units in Ibadan, SW-Nigeria is presented in respect of bedrock types and geochemical controls on the weathering-associated release of trace metals. Consequently, soil, weathered and fresh rock samples from the Precambrian Basement of SW Nigeria were collected from three different bedrock units within Ibadan metropolis and subjected to mineralogical and geochemical analyses. The analytical results revealed major proportions of oxides in the range of 18–20% Al2O3, 2–6% Na2O and 1–6% K2O for weathered profiles over granite-gneiss and pegmatite units, compared to 2–3% Al2O3, <0.5% Na2O and <1.0% K2O over schist-quartzite. For the trace elements, weathered profiles on granite-gneiss and schist-quartzite settings exhibit similar enrichment trends (enrichment factor, EF l) for most of the trace elements, unlike the pegmatite bedrock. However, enrichments are relatively greater in the top soil unit compared to the intermediate saprolite unit, especially for Pb, Ni, Zn, Cr, Co, Rb, Sr and Ba, a situation attributed to leaching and redistribution within the weathered profiles through pedogenetic process and percolating groundwater.Furthermore, the estimated weathering indices using Ruxton Ratio (RR = {SiO2/Al2O3}) and Chemical Index of Alteration (CIA = 100{Al2O3/[Al2O3 + CaO + Na2O + K2O]}) revealed RR of 2.9–3.7 and CIA of 54–73% for granite-gneiss and pegmatite units, implying medium levels of weathering, compared to RR of 30.8–35.5 and CIA of >60% for schist-quartzite units, which suggest weak chemical weathering. Also, the estimated high percentage loss, especially for Pb, Rb, Sr, Ba relative to the bedrocks, shows that the trace elements can be mobilized within the weathering profiles even at a low degree of chemical weathering. Such weathering-induced release of trace metals is of environmental significance as natural lithogenic input sources and as background reference for future monitoring of possible human/anthropogenic impacts.  相似文献   

15.
Pleistocene fluvial landforms and riparian ecosystems in central California responded to climate changes in the Sierra Nevada, yet the glacial history of the western Sierra remains largely unknown. Three glacial stages in the northwestern Sierra Nevada are documented by field mapping and cosmogenic radionuclide surface-exposure (CRSE) ages. Two CRSE ages of erratic boulders on an isolated till above Bear Valley provide a limiting minimum age of 76,400±3800 10Be yr. Another boulder age provides a limiting minimum age of 48,800±3200 10Be yr for a broad-crested moraine ridge within Bear Valley. Three CRSE ages producing an average age of 18,600±1180 yr were drawn from two boulders near a sharp-crested bouldery lateral moraine that represents an extensive Tioga glaciation in Bear Valley. Nine CRSE ages from striated bedrock along a steep valley transect average 14,100±1500 yr and suggest rapid late-glacial ice retreat from lower Fordyce Canyon with no subsequent extensive glaciations. These ages are generally consistent with glacial and pluvial records in east-central California and Nevada.  相似文献   

16.
Sorption of heavy metal cations (Pb(II), Cr(III), Cd(II), Ni(II)) from aqueous solutions on natural Na-clinoptilolite was studied using atomic absorption spectrometry (AAS) and FT-IR spectroscopy. It was found that the sorption capacity of clinoptilolite decreases in the following order: Pb(II) (22,600 mg/kg), Cr(III) (21,200 mg/kg), Cd(II) (10,400 mg/kg) and Ni(II) (6,200 mg/kg). In the FT-IR spectra of the samples, in the region of pseudolattice vibrations (500–800 cm–1), systematic changes connected with the type of cation and its concentration in the initial solution were observed. The proportions of ion exchange and chemisorption in the whole process of sorption were also estimated. It was found that the amount of cations sorbed on clinoptilolite depended on the concentrations and pH of the solutions used as well as on the contact time of zeolite-solution system. After 120 min of the reaction, despite the metal type, 90–100% of the total amount of cations were immobilized.  相似文献   

17.
18.
The behaviour of major and trace elements have been studied along two serpentinite weathering profiles located in the Kongo-Nkamouna and Mang North sites of the Lomié ultramafic complex.The serpentinites are characterized by high SiO2 and MgO contents, very low trace, rare earth and platinum-group element contents. Lanthanide and PGE contents are higher in the Nkamouna sample than in Mang North. Normalized REE patterns according to the CI chondrites reveal that: (i) all REE are below chondrites abundances in the Mang North sample; (ii) the (La/Yb)N ratio value is higher in the Nkamouna sample (23.72) than in the Mang one (1.78), this confirms the slightly more weathered nature of the Nkamouna sample. Normalized PGE patterns according to the same CI chondrites reveal a negative Pt anomaly in the Mang sample. The Nkamouna sample is characterized by a flat normalized PGE pattern.All element contents increase highly from the parent rock to the coarse saprolite.In the weathering profiles, Fe2O3 contents decrease from the bottom to the top contrarily to Al2O3, SiO2 and TiO2. The contents of alkali and alkaline oxides are under detection limit.Concerning trace elements, Cr, Ni, Co, Cu, Zn and Sc decrease considerably from the bottom to the top while Zr, Th, U, Be, Sb, Sn, W, Ta, Sr, Rb, Hf, Y, Li, Ga, Nb and Pb increase towards the clayey surface soil. Chromium, Ni and Co contents are high in the weathered materials in particular in the saprolite zone and in the nodules.REE contents are high in the weathered materials, particularly in Nkamouna. Their concentrations decrease along both profiles. Light REE are more abundant than heavy REE. Normalized REE patterns according to the parent rock reveal positive Ce anomalies in all the weathered materials and negative Eu anomalies only at the bottom of the coarse saprolite (Nkamouna site). Positive Ce anomalies are higher in the nodular horizon of both profiles. An additional calculation method of lanthanide anomalies, using NASC data, confirms positive Ce anomalies ([Ce/Ce*]NASC = 1.15 to 60.68) in several weathered materials except in nodules ([Ce/Ce*]NASC = 0.76) of the upper nodular horizon (Nkamouna profile). The (La/Yb)N ratios values are lower in the Nkamouna profile than in Mang site.PGE are more abundant in the weathered materials than in the parent rock. The highest contents are obtained in the coarse saprolite and in the nodules. The elements with high contents along both profiles are Pt (63–70 ppb), Ru (49–52 ppb) and Ir (41 ppb). Normalized PGE patterns show positive Pt anomalies and negative Ru anomalies.The mass balance evaluation, using thorium as immobile element, reveals that:
– major elements have been depleted along the weathering profile, except for Fe, Mn and Ti that have been enriched even only in the coarse saprolite;
– all the trace elements have been depleted along both profiles, except for Cr, Co, Zn, Sc, Cu, Ba, Y, Ga, U and Nb that have been enriched in the coarse saprolite;
– rare earth elements have been abundantly accumulated in the coarse saprolite, before their depletion towards the top of the profiles;
– platinum-group elements have been abundantly accumulated in the coarse saprolite but have been depleted towards the clayey surface soil.
Moreover, from a pedogenetical point of view, this study shows that the weathering profiles are autochtonous, except in the upper part of the soils where some allochtonous materials are revealed by the presence of zircon grains.  相似文献   

19.
Natural processes and anthropogenic activities may result in the formation and/or introduction of perchlorate (ClO4) at elevated levels into the environment. Perchlorate in soil environments on Earth and potentially in Mars may modify the dynamics of metal release and their mobilization. Serpentine soils, known for their elevated metal concentrations, provide an opportunity to assess the extent that perchlorate may enhance metal release and availability in natural soil and regolith systems. Here, we assess the release rates and extractability of Ni, Mn, Co and Cr in processed Sri Lankan serpentine soils using a range of perchlorate concentrations (0.10–2.50 w/v ClO4) via kinetic and incubation experiments. Kinetic experiments revealed an increase of Ni, Mn, Co and Cr dissolution rates (1.33 × 10−11, 2.74 × 10−11, 3.05 × 10−12 and 5.35 × 10−13 mol m−2 s−1, respectively) with increasing perchlorate concentrations. Similarly, sequential and single extractions demonstrated that Ni, Mn, Co and Cr increased with increasing perchlorate concentrations compared to the control soil (i.e., considering all extractions: 1.3–6.2 (Ni), 1.2–126 (Mn), 1.4–34.6 (Co) and 1.2–6.4 (Cr) times greater than the control in all soils). Despite the oxidizing capability of perchlorate and the accelerated release of Cr, the dominant oxidation state of Cr in solution was Cr(III), potentially due to low pH (<2) and Cr(VI) instability. This implies that environmental remediation of perchlorate enriched sites must not only treat the direct hazard of perchlorate, but also the potential indirect hazard of related metal contamination.  相似文献   

20.
An objective of the North American Soil Geochemical Landscapes Project is to provide relevant data concerning bioaccessible concentrations of elements in soil to government and other institutions undertaking environmental studies. A protocol was developed that employs a 1-g soil sample agitated overnight with 40 mL of reverse-osmosis de-ionized water for 20 h, and determination of 63 elements following three steps of centrifugation by inductively coupled plasma–atomic emission spectrometry and inductively coupled plasma–mass spectrometry the following day. Statistical summaries are presented for those 48 elements (Ag, Al, As, B, Ba, Be, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, I, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Pb, Pr, Rb, Re, S, Sb, Si, Sm, Sn, Sr, Tb, Ti, Tl, Tm, U, V, W, Y, Yb, Zn, Zr, and pH) for which <20% of their data were reported as below the detection limit. The resulting data set contains analyses for 161 A-horizon soils collected along two transects, one along the 38th parallel across the USA and the other from northern Manitoba to the USA–Mexico border. The spatial distribution of three selected elements (Ca, Cu, and Pb) along the two transects is discussed in this paper both as absolute amounts liberated by the leach and expressed as a percentage of the total, or near-total, amounts determined for the elements. The Ca data reflect broad trends in soil parent materials, their weathering, and subsequent soil development. Calcium concentrations are generally found to be lower in the older soils of the eastern USA. The Cu data are higher in the eastern half of the USA, correlating with soil organic C, with which it is sequestered. The Pb data exhibit little regional variability due to natural sources, but are influenced by anthropogenic sources. Based on the Pb results, the percentage water-extractable data demonstrate promise as a tool for identifying anthropogenic components. The soil–water partition (distribution) coefficients, Kds (L/kg), were determined and their relevance to estimating bioaccessible amounts of elements to soil fauna and flora is discussed. Finally, a possible link between W concentrations in human urine and water-extractable W levels in Nevada soils is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号