首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
为了保障煤矿安全开采,有效解决低透气性煤层瓦斯抽采达标周期长及抽采效率低的问题,对煤层高压注水压裂进行了数值模拟分析,得出裂缝前端和裂缝两侧应力变化,分析了裂缝水力压裂在消除应力集中和整体消突方面的优势,并在某矿3~#煤层开展了应用研究,增透卸压效果较好,实现了低透气性煤层瓦斯高效抽采。  相似文献   

2.
水力压裂是增加煤岩体透气性的有效方法之一,针对深部水力压裂存在的问题,提出了"水-砂-水"(W-S-W)水力压裂强化增透技术,以千米深井高瓦斯煤层为研究背景,开展了W-SW水力压裂强化增透试验和常规水力压裂试验,并对增透效果进行了考察。结果表明:煤体的非均质性和孔隙裂隙分布的非均匀性导致了煤体非对称性增透,在水力压裂的作用下裂缝的扩展演化是递进循环式的,并依次经历了能量缓慢增长、微裂隙萌生、局部损伤破坏、裂缝迅速扩展、裂缝网络循环扩展演化5个阶段。高压水对煤体内部结构产生切割,形成一种高压水驱动裂隙弱面不断扩展、延伸的连锁效应,并使支撑剂(砂)楔入到裂缝端部,抑制了裂缝的闭合,增加了煤体的透气性。采用W-S-W水力压裂强化增透区域煤层的百孔抽采量最高达1.2 m~3/min,平均百孔抽采量与瓦斯体积分数分别为0.77 m~3/min,52%,与常规水力压裂区域的平均百孔抽采量0.44 m~3/min和瓦斯体积分数31%相比分别提高了0.75倍、0.68倍,与未压裂区域的平均百孔抽采量0.32 m~3/min和瓦斯体积分数24%相比分别提高了1.4倍、1.2倍,W-S-W水力压裂强化增透区域煤层的百孔抽采量与瓦斯体积分数均具有明显的峰值阶段,且稳定抽采阶段可持续45 d以上,瓦斯抽采时效性明显,实现了千米深井高瓦斯煤层大范围增透和长时高效抽采瓦斯。  相似文献   

3.
《煤炭技术》2015,(9):163-164
新田煤矿煤层透气性低、瓦斯含量大,抽采效率低。为了增加煤层透气性、提高瓦斯抽采效果,提出在新田煤矿1402工作面回风顺槽底抽巷40-41#钻场中间位置,实施水力压裂作业的试验研究。通过水力压裂增透试验,考察了新田煤矿穿层钻孔水力压裂工艺可行性及相关技术参数。现场试验后表明:通过水力压裂使水力压裂钻孔与之前的抽采钻孔周围煤体裂缝产生沟通,使煤层整体卸压增透,提高了瓦斯抽采效果。  相似文献   

4.
针对阳泉矿区煤层透气性低瓦斯难以抽采特点,研究提出了水力切槽及脉冲水力压裂相结合的新型煤层增透技术,该技术利用水力切割缝槽卸载钻孔周围应力并形成初始导向裂缝,采用定向脉动水力压裂致裂煤体,提高煤体渗透率和卸压增透范围,改变煤体应力场和瓦斯流动场。研究结果表明:切槽钻孔单孔瓦斯抽采累计混合量约是常规孔的10倍以上,单孔抽采混合量约是常规钻孔的20倍以上,钻孔瓦斯抽采最高浓度是常规组钻孔的2~3倍,有效提高阳泉矿区低渗煤层穿层钻孔瓦斯抽采能力,达到煤层整体卸压增透及瓦斯高效抽采的目的。  相似文献   

5.
深部低透气性煤层上向穿层水力压裂强化增透技术   总被引:2,自引:0,他引:2       下载免费PDF全文
蔡峰  刘泽功 《煤炭学报》2016,41(1):113-119
煤层气的长时间、高效抽采的是当前煤层气灾害治理与煤层气资源利用过程中亟需解决的问题。利用数值模拟实验与工程试验相结合的方法,系统地研究了井下底抽巷对目标煤层进行水力压裂强化增透技术。研究发现,水力压裂的裂隙扩展过程经历了能量与应力累积、微裂隙产生、局部压裂损伤、煤体抵抗失效与裂隙迅速拓展以及压裂水能量再蓄集再扩张循环5个阶段,水力压裂产生了大量的裂隙,再加上顶底板碎胀作用而使煤层卸压,使得煤体透气性大幅提高。水力压裂工程试验验证了压裂水的运移轨迹,与数值模拟与分析结果相吻合,实现了大范围增透和长时效的煤层气抽采,从而为深部低透气性煤层强化增透和煤层气高效抽采提供了技术保障。  相似文献   

6.
对煤矿中埋藏深度大、瓦斯含量高、透气性低的煤层瓦斯抽采问题进行研究,为了提高煤体透气性,加速瓦斯的流动,通过水力压裂的方法对煤体进行破坏,使煤层中产生利于瓦斯流动的的缝隙,同时通过注水提高煤体的塑性。采用RFPA2D-Flow数值模拟的方法,对煤体水力压裂的过程中钻孔周围煤体应力变化、煤体位移变化、钻孔周围水头压力分布等规律做数值模拟分析。结果表明,在无自由孔条件下,当注水压力逐渐增大时,煤体的裂缝扩张范围逐渐变大;在有自由孔的条件下,当注水压力逐渐增大时,钻孔的卸压范围也跟着逐渐增大。  相似文献   

7.
为实现高瓦斯低渗透煤层煤与瓦斯安全高效共采的目标,提出煤层切槽致裂增透新技术。理论分析了水力切槽与脉冲水力压裂联合作用于煤体时应力场-损伤场的重构和裂隙网构建效应,建立了煤层内预制切槽导向水压致裂的卸压增透模型,分析了煤层切槽与水压致裂的应力损伤联控机制,获得了切槽煤层水压致裂下的裂纹扩展及渗透率演化规律,实现了切槽卸压场与水压致裂场的有效结合,控制了水力压裂裂隙扩展方向,破除了孔槽周围应力集中圈的瓶颈效应,提高了煤层内整体增透效果。  相似文献   

8.
针对高瓦斯低透气性煤层抽采率低下、钻孔工程量大及抽采周期长的难题,提出水力压裂卸压增透技术。借助RFPA2D-Flow软件模拟分析了压裂时压裂孔附近煤体从发生破裂、裂隙裂纹的生成演化、扩展延伸到最终贯通的完整过程,得到钻孔附近煤体的裂隙裂纹演化规律。通过在斜沟煤矿18205材料巷实施水力压裂现场试验,发现当水压升高至16MPa时有效影响半径为7m,试验结果与模拟结果基本一致;水力压裂影响范围内煤层的透气性系数提升14倍,瓦斯抽采浓度提高了4.43倍,抽采纯量提升了9.62倍,抽采效果显著提高。  相似文献   

9.
王飞  王尧 《中州煤炭》2013,(1):7-9,50
煤层水力压裂技术是应用于高瓦斯低透气性突出煤层的一种卸压增透消突技术,演马庄矿在22111工作面实施水力压裂,并控制注水压力、注水时间、注水量及封孔方式等条件,将水力压裂前后瓦斯抽放浓度和抽放量进行了比较。结果表明:压裂后实施抽采,抽采瓦斯量比常规抽采孔增加了36.89倍,单孔最大抽采量比常规抽采孔增加了59.58倍。  相似文献   

10.
张九零 《煤炭工程》2014,46(8):64-66
针对开滦集团煤层高瓦斯低透气性的特点,为了增大煤体裂隙与范围,提高煤层透气性,在开滦唐山矿井下进行了注水压裂增透工业试验,研究了注水压裂过程中注水孔的影响半径,确定了注水孔的合理深度,并按试验工作面建立了全尺寸物理模型,进行了相关数值模拟,分析了不同压力下的压裂增透效果。研究表明,注水压裂技术在开滦矿区具有可行性,并确定了增透过程中的关键参数。  相似文献   

11.
目前水力压裂技术已广泛用于低透气性区域煤层的消突增透,注水量是水力压裂工艺重要的控制参数,也是决定压裂效果的关键指标,但是如何准确定量一直是水力压裂技术的难题。以探讨井下低透煤层水力压裂后含水率与瓦斯含量的变化规律为出发点,在平煤股份十二矿低透煤层开展了重复水力压裂增透及效果考察试验,通过详细分析考察孔的含水率和瓦斯含量,获得了压裂后煤层含水率、瓦斯含量及其关系规律,并初步确定了水力压裂区域有效注水量临界值。研究表明:压裂后煤层含水率的变化规律与瓦斯含量相反,含水率增幅较大的区域瓦斯含量降幅较小,含水率增幅较小的区域瓦斯含量降幅较大;含水率小于3%的区域瓦斯含量平均较低且差值较小,而含水率大于3%区域的瓦斯含量平均较高且差值较大;由此判断水力压裂区域有效注水量最高为含水率3%。研究结果可为低透煤层水力压裂泵注量的计算、压裂后煤巷安全高效的掘进与抽采钻孔的优化提供参考。  相似文献   

12.
潘雪松 《中州煤炭》2020,(7):27-30,33
为了解决矿井高应力和构造应力影响作用下煤层透气性差、钻孔塑性变形垮孔严重的问题,以松藻煤电公司逢春煤矿M7、M8煤层为试验对象,采用水力压裂和水力割缝相结合的方式,对煤层进行增透,以提高瓦斯抽采效率。介绍了穿层钻孔区域防突措施设计方案,开展了水力压裂钻孔、瓦斯抽采钻孔设计以及注水压力、注水量和保压时间等水力压裂工艺参数试验。通过比较水力压裂、水力割缝增透措施结合硬套管封孔技术及普通钻孔瓦斯抽采情况,表明水力压裂和水力割缝后钻孔瓦斯抽采浓度分别提高16%~36%和4%~16%,瓦斯抽采量(纯量)分别提高了6倍和3倍,可为同类地质条件瓦斯抽采提供参考。现场试验结果表明,复杂地质低渗煤层水力压裂—割缝综合瓦斯增透技术在煤层强化抽采中有较好的实际应用价值。  相似文献   

13.
为了提高井下低透气性煤层瓦斯抽采钻孔瓦斯抽采效果,开发了适合中等偏硬低透煤层裸眼钻孔高压稳定封孔装备,采用了本煤层定向长钻孔整体水力压裂增透技术,分析了本煤层定向长钻孔水力压裂增透机理,并进行了水力压裂强化增透试验。根据压裂施工过程中压裂参数变化规律,利用压裂前后煤层全水分和钻孔瓦斯参数变化对比,综合考察和评价了水力压裂增透效果和影响范围。研究表明:压裂过程中最大注水压力24.6MPa,发生多次明显压降,最大压降5.2MPa。水力压裂增透后,煤层瓦斯日抽采纯量提高了12.70倍,百米钻孔瓦斯抽采量提高了2.67倍,压裂最大影响半径达到了 38m,平均超过30m,提高了瓦斯抽采效率。  相似文献   

14.
水力压裂是提高煤层瓦斯抽采效率的常用增透措施之一,在常规水力压裂的基础上,根据松软煤层缝网压裂的机理及力学原理,推导出了含天然裂隙的松软煤层产生缝网,需施工裂缝内的净压力大于煤储层水平应力之间的差值,同时对裂缝进行模拟,得出变流量注入可以提高裂缝内净压力,形成缝网结构,并在平煤十二矿己15-31040采面进行水力压裂现场试验。试验结果表明:采用变流量缝网压裂水力压裂保压压力、累计注水量等相关参数以及单孔瓦斯抽采浓度、纯量均高于原始煤层及稳定流量常规压裂,说明变流量缝网压裂增透效果明显较好,该方法可以作为水力压裂增透技术借鉴的一种方法。  相似文献   

15.
针对阳泉矿区碎软低渗高突煤层开展了井下长钻孔整体水力压裂增透技术的工程试验研究,工程实现了井下一次性整体压裂煤孔段长度达307 m,单孔注入水量达1 510 m3,最大注水压力达26.09 MPa。效果检测表明钻孔压裂影响半径最大达58 m,压裂后煤层透气性系数提高了2.67倍,百米钻孔瓦斯流量衰减系数降低了55%,230 d内钻孔日抽采纯甲烷1 395~2 810 m~3,平均2 173 m~3,钻孔累计抽采纯甲烷50.86×10~4m~3,抽采瓦斯浓度为49.38%~83.70%,平均64.31%。分析认为:水力压裂能改善煤层裂隙和孔隙的连通性、降低煤层有效应力、提高煤层渗透率,注水能促进煤层瓦斯从吸附态向游离态转化,是煤层压裂后钻孔高效抽采瓦斯的关键,依据填砂堵缝压裂技术原理提出了碎软低渗煤层长钻孔整体水力压裂煤层裂隙开启、扩展和延伸机制。工程试验成果及认识可为井下长钻孔整体水力压裂增透高效抽采瓦斯提供借鉴。  相似文献   

16.
李秀峰 《中州煤炭》2016,(10):27-30
针对煤层水力压裂过程中存在的压裂水压小、设备能力低、封孔质量差等问题,结合煤层具体条件,从压裂钻孔高压封孔工艺、水力压裂系统设备、现场压裂工艺等方面对鹤壁十矿水力压裂卸压增透技术进行了优化研究。现场压裂试验结果显示:压裂导致煤体卸压增透的区域达到30 m左右,煤层渗透率显著增大;压裂试验后,现场实测煤层残存瓦斯含量以及通过含量反算的残存瓦斯压力均明显要低于防突规定中的突出临界指标值;且压裂试验后,最大抽采浓度较压裂试验前增加了6.30倍,日均单钻孔抽放量增加了17.5倍,抽采效果显著改善,改进后的水力压裂工艺达到了减少施工量、提高抽采率、降低煤层突出危险性的目的。  相似文献   

17.
煤层压裂开采与治理区域瓦斯的基本问题   总被引:1,自引:0,他引:1       下载免费PDF全文
由于煤层的矿物成分、结构体系、瓦斯的吸附解吸效应等导致含瓦斯煤层水压致裂复杂,煤层压裂治理区域瓦斯技术目前整体上还处于起步阶段。提出了煤层水压(流压)致裂治理区域瓦斯的理论、技术与装备等基本问题框架。在分析煤层物理化学特性的基础上,初步给出了煤层压裂的力学机制与裂缝基本空间形态。分析了含瓦斯煤层水压致裂的物理化学作用、结构改造增透、应力扰动效应、驱赶瓦斯效应、水锁效应等作用。以孔隙压力梯度作用机制为切入点,深入研究煤岩层压裂的细观破裂机理、应力扰动效应与评价方法、体积致裂机制、驱赶瓦斯效应、支撑剂在裂缝网络的运移规律与压嵌特性、排采规律等理论问题。针对驱赶瓦斯效应扬长避短,使含瓦斯煤层压裂上升至压裂驱赶层次。提出了需要深入研究的技术安全性评价、工艺技术、合理泵注排量、压裂裂缝扩展及其效应监测、适用条件与规范等技术问题。研制了井下压裂治理区域瓦斯的致裂封孔系统、分析软件与测控系统等成套装备。  相似文献   

18.
章冰悬 《中州煤炭》2018,(12):35-37
为了提高瓦斯抽采率及增加煤层透气性,研究了水力压裂增透范围以及其在瓦斯抽采中的应用,分析了瓦斯渗透率与含水率关系、煤层应力—渗流规律,采用数值模拟软件,研究了孔隙水压力分布、孔隙最大主应力、不同测压系数下最大主应力变化、宏观裂隙长度变化规律以及渗流量、空隙水压、最大主应力的变化曲线。应用实践表明:当采用水力压裂技术时,抽采效果提高了3~5倍。研究可为类似工程条件的瓦斯抽采提供了借鉴。  相似文献   

19.
针对赵固二矿煤层透气性低、钻孔有效影响半径小,实施定向长钻孔代替底板岩巷进行区域瓦斯治理期间钻孔工程量大、瓦斯抽采效果不理想的问题。结合煤层赋存特征及钻孔施工情况,采用定向长钻孔整体水力压裂增透技术,理论分析了合理坐封位置、压裂参数,完成200 m煤巷条带一次整体压裂,最大泵注压力24.3 MPa、累计注水量1 613 m3。并基于煤层全水分变化,考察确定了单个钻孔压裂影响范围达到巷道两帮30 m,有效改善了煤体储层特性,提高了煤层瓦斯抽采效率。在实现定向钻孔对预抽煤巷条带可靠控制的同时,最大程度降低了钻孔工程量、缩短了瓦斯治理周期,为实现矿区“以孔代巷”及高效安全开采提供了技术支撑。  相似文献   

20.
对于低透气性煤层瓦斯瓦斯抽采难度加大问题,采用了水力压裂对煤层进行增透,与之同时,水力压裂中注水压力是一个控制压裂效果的关键参数之一。采用数值模拟方研究平煤十二矿己15-31040工作面煤巷条带区域注水压力煤层水力压裂效果的影响。从模拟结果可以看出,随着注水压力的增加,压裂影响半径亦随之增大。当注水压力增大到一定范围,注水压力的增大对压裂增透效果的影响意义不大。将数值模拟结果应用于现场实际工程中,在压裂施工中,未发生压裂事故,而且巷道顶板保持完好。压裂后本煤层瓦斯衰减系数原始区域减小了13.3倍,透气性系数比原始区域增大了21.2倍,而且与之同时,煤层进行水力压裂后,瓦斯抽采浓度和纯量大幅度提升,单孔抽采浓度和纯量为未压裂区域的2.94倍及13.5倍,压裂增透效果明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号