首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 421 毫秒
1.
研究了采用粉末改性处理和高速压制相结合的技术制备高密度铁基粉末冶金材料的工艺。所用的粘结化铁基粉末的名义成分(质量分数)为Fe-1.5Ni-0.5Cu-0.5C;重点研究了压制能量和粉末塑化改性对压坯密度的影响,以及高密度压坯的烧结致密化行为。结果表明:粘结化铁基粉末具有较高的流动性(25.1s/50g)和松装密度(3.2~3.4g/cm3)。未经塑化改性处理的粉末随着压制速度的增加,压坯密度提高缓慢,在8.7m/s高压制速度下,压坯密度为7.37g/cm3。塑化改性处理粉末具有优异的塑性变形能力,压坯密度随着冲击能量的增加而迅速增大,在6.2~8.7m/s的压制速度范围内,压坯密度为7.07~7.62g/cm3。经过8.7m/s高速压制和1 150℃烧结后,烧结体密度达到7.51g/cm3,相对密度为96.5%。  相似文献   

2.
利用粉末冶金技术制备纯铁软磁材料,在不同温度和压力下将不同粒径铁粉压制成生坯,并在保护气氛下进行烧结。结果表明:不同粒径铁粉混合有助于压坯密度的增加,适宜的压制温度可以有效地促进粉末流动,避免大尺寸孔洞的形成,优化组织。140℃、800 MPa温压条件下雾化铁粉压坯密度最高可达7.35 g·cm-3。对比常温压制,温压压坯烧结后孔洞分布均匀。烧结体密度随温度的升高而上升,雾化铁粉压坯在1250℃烧结后密度最高可达7.47 g·cm-3。在一定范围内,软磁材料磁性能与密度成正比,混粉压制试样的密度接近理论值,但在混合铁粉中,较细的铁粉夹杂于粗粉中,阻碍磁畴壁移动,造成饱和磁化强度(Ms)偏小、矫顽力(Hc)偏大的现象,Ms为205.51 emu·g-1,Hc为7.9780 Oe。  相似文献   

3.
突破常规铁基粉末合金的制备工艺,设计出一种制备高密度Fe-Cu-C合金的新工艺.通过对铁粉表面进行硫化处理,Fe与S反应合成FeS,均匀包覆在Fe粉颗粒表面,形成一层FeS润滑薄膜,有利于降低压制摩擦力.通过X射线衍射、扫描电镜、和场发射扫描电镜分析研究材料的物相、元素分布和显微组织.研究结果表明:包覆在铁粉颗粒表面的FeS薄膜,有利于提高压坯密度,活化烧结.当S质量分数为0.5%时,硫化处理的Fe-2Cu-0.8C合金的力学性能优异,压坯密度7.31 g·cm-3,硬度78.6 HRB,抗拉强度485 MPa;当S质量分数达到0.8%时,多余的FeS占压制体积分数,导致试样的压坯密度降低,力学性能降低.   相似文献   

4.
利用电子探针观察高纯金属钒粉粒度和形貌, 使用油压机将高纯金属钒粉压制成坯条, 并采用万能试验机测定钒坯条压溃变形力曲线, 分析钒坯条最优压制压力; 分别通过热压烧结和冷等静压+真空烧结的方法对高纯钒粉进行烧结, 研究烧结工艺对高纯钒粉烧结特性和力学性能的影响。结果表明: 采用冷等静压+真空烧结的方法, 在压制成形过程中, 钒粉压坯密度和相对密度随压力的增加而逐步提高, 压力提高到280 MPa时, 压坯密度和相对密度分别为3.99 g·cm-3和66.94%;经真空烧结后, 坯料密度和相对密度分别为5.28 g·cm-3和88.59%。压制压力由80 MPa提高到200 MPa时, 压溃强度从0.4 MPa增加到6.0 MPa, 增大趋势较为明显; 压制压力提高到280 MPa时, 压溃强度增加到7.4 MPa, 增大趋势变缓。经热压烧结坯料的相对密度比冷等静压+真空烧结坯料的相对密度高, 280MPa压力下热压烧结坯料密度和相对密度分别达到5.51g·cm-3和92.91%。  相似文献   

5.
为获得密度较高的电子陶瓷压坯及制品,将低电压电磁成形引入二氧化钛(TiO2)陶瓷粉末压制,分析了电压参数对压坯密度及烧结坯微观组织的影响。研究结果表明:TiO2陶瓷粉末低电压电磁压制在800~1000V范围内成形较好,在此范围内压坯密度随电压增加而增加,烧结后陶瓷制品密度提高,电压越高,密度增幅趋缓;其它放电参数不变的条件下,粉末坯体高径比越大,压坯密度与烧结坯密度越小;但高径比增大,获得高密度制品的最佳放电电压相近;两次压制可以有效提高压坯及烧结坯密度;相比模压成形,电磁压制的TiO2陶瓷密度较高,烧结制品晶粒尺寸较小。  相似文献   

6.
采用高速冲击复压技术压制铁基粉末,研究在不同预烧结温度下冲击能量对生坯密度、最大冲击力、脱模力和径向弹性后效的影响。结果表明:在不同的预烧结温度下,生坯密度均随着冲击能量的增加而逐渐增大。当复压冲击能量为6 944 J时,预烧结温度为780℃的生坯密度达到7.65 g/cm3,其相对密度约为98.4%。在相同的复压冲击能量下,780℃预烧结温度时压坯的密度较高,最大冲击力较小,脱模力较小,弹性后效更低。  相似文献   

7.
高速压制法制备90W-10Cu复合材料   总被引:2,自引:0,他引:2  
采用高速压制技术(HVC)制备W90骨架,然后在氢气炉中1400℃高温熔渗得到90W-10Cu复合材料。研究压制温度及压坯质量对压坯密度及显微形貌的影响。结果表明:随压制温度升高,压坯密度增大,在950℃高速压制可获得相对密度大于80.65%的W骨架,钨颗粒连接致密,分布均匀,孔隙联通性好。当压坯质量增加时,由于外加的能量密度减小,导致压坯密度减小。通过2次高速压制,压坯密度进一步提高;90W-10Cu材料的相对密度达99.5%,热导率175W/(m.K),气密性1×10-10Pa.m3.s-1,热膨胀系数(CTE)为6.74~7.41/(10-6K-1),各项指标均达到相应热沉材料的要求。  相似文献   

8.
针对烧结温度等参数对Fe2O3粉末压制烧结密度的影响进行了试验.结果表明:在实验条件相同情况下,粉末粗细颗粒比在85%时压坯密度最高;随着压制压力的升高,在400MPa以下压坯密度上升速率较大,在400~650MPa之间压坯密度呈平台型和上升型交替趋势;烧结块在最终烧结温度为1240℃烧结获得的密度最高.  相似文献   

9.
行业信息     
高速压制技术在粉末冶金工业中的应用粉末冶金工业中,高速压制(HVC)作为一种成本较低的技术手段,可以有效提高材料密度及性能。高速压制技术植根于传统粉末冶金技术,具体工艺过程为:先采用传统方法对粉末进行单向或多向压制,得到密度为7.5g/cm3左右的压坯。预烧结除去压坯中的润滑剂后,再采用高速压制技术进行复压,然后再次烧结。采用该工  相似文献   

10.
分析了GCrl5轴承钢粉体的压制规律,探索了添加Cu对压坯密度、弹性后效、烧结密度和力学性能的影响及压制压力和烧结温度对材料密度、硬度的影响。结果表明:GCr15轴承钢粉体符合黄培云压制方程,在小于1 300MPa的压力下,压坯密度随压力的增大而增加;在低于1 300℃烧结温度下,烧结坯的密度随烧结温度的升高而增加;添加Cu可以提高压坯密度和烧结密度,但对弹性后效影响不大;压制压力为1 200MPa时,不含Cu的GCr15轴承钢磨屑粉压坯密度为6.60g/cm~3,弹性后效为1.73%,H_2气氛中1 150℃烧结2h后密度为6.91g/cm~3;添加5%Cu(质量分数)粉的压坯在H_2气氛中1 300℃烧结2 h后密度达7.23g/cm~3,硬度为36.3 HRC。  相似文献   

11.
弥散强化铜材料具有高强度和高导电性的特性,孔洞是影响导电率的重要因素.本文采用高速压制成形技术,对Al2O3质量分数为0.9%的弥散强化铜粉压制成形,研究了压制速度对生坯的影响.当压制速度为9.4 m·s-1时得到密度为8.46 g·cm-3的生坯.研究了烧结温度对烧结所得Al2O3弥散强化铜试样导电率的影响.当生坯密度相同时,烧结温度越高,所得试样的导电率也越高.断口与金相分析表明:烧结温度为950℃时,烧结不充分,颗粒边界以及孔洞多而明显,孔洞形状不规则;烧结温度为1080℃时,颗粒边界消失,孔洞圆化,韧窝出现,烧结坯的电导率为71.3%IACS.   相似文献   

12.
采用高速冲击压机压制钛粉,研究润滑剂含量对压坯性能的影响.结果表明:加入适量的润滑剂可以提高钛粉成形时的质量能量密度,从而获得更高密度的压坯.当润滑剂加入量为0.3%(质量分数)时,钛粉成形的最大质量能量密度为0.192 KJ/g,压坯密度为4.38 g/cm3,相对密度为97.4%.此外,适量的润滑剂能提高钛粉压制过...  相似文献   

13.
采用磁脉冲成形和模压成形2种方法对置氢Ti6Al4V粉末进行轴向压制,然后在保护气氛下烧结,研究压制方式和烧结工艺对烧结体真空退火后组织/性能的影响.结果表明:磁脉冲压实的不同氢含量粉末坯体烧结并真空退火后的相对密度、硬度和抗压强度分别比传统模压500 MPa下压制的高8%~13%、9~17 HRA和254~1033M...  相似文献   

14.
利用自主研发的机械蓄能式高速压机成形Ti-29Nb-13Ta-4.6Zr粉末并进行真空烧结,研究冲击能量对试样的密度及力学性能的影响。结果表明:随着冲击能量的提高,试样生坯密度提高,在冲击能量为1 805 J时,获得的最大生坯密度达到5.63 g/cm~3(相对密度94.1%);径向弹性后效随着冲击能量增加而增加;经真空1 250℃烧结后,烧结坯的密度随着冲击能量的增加而增加,但烧结坯的体积发生了膨胀,最大烧结密度为5.53 g/cm~3(相对密度为92.5%);真空烧结2.0 h后,钛合金的抗拉强度和硬度达到最大值,分别为629.8 MPa和324.5 HV。  相似文献   

15.
《粉末冶金学》2013,56(1):12-19
Abstract

The cold compaction and vacuum sintering behaviour of a Ti powder and a Ti hydride powder were compared. Master sintering curve models were developed for both powders. Die ejection force, green strength and green porosity were lower for hydride powder than for Ti powder, all probably resulting from reduced cold welding and friction during compaction. For sintering temperatures above ~1000°C, most of the difference in the sintered density of Ti and hydride is explained by assuming equal densification, while taking into account the lower green porosity of compacts made from hydride powder. However, there is evidence that particle fracture during compaction also contributes to increased sintered density for hydride powder. The Ti powder conformed to a master sintering curve model with apparent activation energy of 160 kJ mol?. The activation energy for Ti hydride also appeared to be about 160 kJ mol?, but the model did not fit the experimental data well.  相似文献   

16.
粉末冶金高致密化成形技术的新进展   总被引:13,自引:3,他引:13  
本文针对粉末冶金行业近十年来出现的提高制品致密化的新途径新方法, 简要介绍了其中的温压技术,流动温压技术、模壁润滑技术、高速压制技术、动力磁性压制技术、爆炸压制技术、放电等离子烧结技术的原理、特点、发展和应用情况。指出发展粉末冶金高效高致密化成形技术是粉末冶金的发展方向和研究重点, 产品致密化程度的提高将大大促进性能的改进。粉末冶金新技术、新工艺、新材料的不断出现, 必将促进高技术产业的快速发展, 也必将带给材料工程和制造技术以光明的前景。  相似文献   

17.
《粉末冶金学》2013,56(3):278-284
Abstract

A new technological approach to the fabrication of high density powder metallurgy (PM) parts via single pressing sintering, allowing cold compaction to be performed without admixed lubricants, has been studied. The influence of in pore gas on the compacts' green density and their sintered properties were evaluated. A mathematical expression relating in pore gas pressure in the compacts to the green density was developed. The expression showed that in order to reduce the negative influence of gases trapped in the pores it is necessary to ensure effective air drainage from the compaction zone. In order to ensure sufficient air evacuation during cold compaction, a new design of porous die was developed. The behaviour of powder mixes with different lubricants during cold compaction in porous die was investigated. All the test conditions were evaluated in terms of green and sintered properties, including the ejection force, green and sintered densities, tensile strength and surface hardness. In the context of the experimental work, compaction in porous die promoted the improved combination of green and sintered properties compared with compaction in conventional dies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号