首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Based on the Al2O3/(W,Ti) C ceramic material, optimum design of the material compositions were carried out, which includes the theoretical calculation of the critical volume fraction of the reinforcement phase, and the optimum design based on the impact resistance, thermal shock resistance and wear resistance, etc. It is found that the optimum volume fraction of (W,Ti)C is 31.2%, 32.8% and 34%, respectively, which is corresponding with the best impact resistance, thermal shock resistance and wear resistance. After comprehensive consideration, the optimum volume fraction of (W,Ti)C in Al2O3/( W, Ti)C ceramic material is finally determined to be 30%. Then, effects of the content of rare earth yttrium on the mechanical property of the Al2O3/30vol% (W,Ti)C ceramic material were investigated experimentally. It indicates that when the content of yttrium is 0.25% ~ 0.5%, both flexural strength and fracture toughness of the rare earth containing ceramic material are further improved with the increment of approximately 10% ~16%.  相似文献   

2.
SiC和Ti(C,N)颗粒弥散陶瓷材料的力学性能与微观结构   总被引:1,自引:0,他引:1  
采用热压工艺制得SiC和Ti(C,N)双相弥散Al2O3基陶瓷复合材料,该材料具有较高的抗弯强度、断裂韧度和硬度。研究表明:只有在合适的热压工艺和组分条件下才能获得良好的微观结构与力学性能。该陶瓷复合材料的增韧机制主要是裂纹桥联、裂统偏转和颗粒拔出。此外,大量孪晶和位错的存在在对材料的增韧补强也有所贡献。  相似文献   

3.
The addition of rare earth element yttrium played an important role in the improvement of both mechanical properties and wear resistance of Al2O3/(W,Ti)C ceramic cutting tool material.Mechanical properties especially the fracture toughness and flexural strength were obviously increased when a suitable amount of the yttrium were added.Wear resistance of the developed rare earth ceramic cutting tool material was higher than that of the corresponding materials without rare earth in the machining of the hardened 45# carbon steel and cast iron HT20-40.Wear modes of the Al2O3/(W,Ti)C rare earth ceramic tool materials were mainly flank wear and crater wear accompanied with slight notch wear when machining the hardened carbon steel.Wear mechanisms were major abrasive wear at low cutting speed and adhesive wear at high cutting speed.Wear modes were nearly the same except that the adhesion phenomenon in the crater area was intensified when machining cast iron.The flank wear area was relatively smooth with no obvious plowing phenomenon which was possibly concerned with the workpiece of low hardness and the adhesion phenomenon at high cutting temperature.  相似文献   

4.
高能球磨稀土高硅铝合金粉末性能表征   总被引:1,自引:1,他引:0  
对快速凝固法制备得到的Al-20Si-0.35RE合金进行不同时间的高能球磨, 然后对球磨后的粉末进行多次热压变形, 采用XRD, ESEM以及TEM等表征变形前后合金粉末的显微组织, 并对变形后合金的导电性能进行了研究. 研究发现快速凝固Al-20Si-0.35RE合金粉末的显微组织主要由细小的Al-Si固溶体(0.3~0.5 μm)、初晶硅、稀土铝硅化合物(0.16~0.3 μm)组成; 随着球磨时间延长, 颗粒粒径显著减小; 经过多次热压变形后合金晶粒显著细化, 晶格畸变减小, 位错钉扎稀土化合物, 形成类似表面渗流效应, 合金导电率提高至70%IACS.  相似文献   

5.
Development and application of new ceramic die materials is one of the important topics in the field of die research. The composition, processing technology, mechanical property and engineering performance of the ceramic materials such as cermet, ZTA, TZP, TZP/Al2O3, TZP/TiC/Al2O3, PSZ and Sialon, etc., with rare earth yttrium, lanthanum and cerium, and so on working as additives, were investigated and analyzed in the present study. Problems existed in the research and application of rare earth ceramic die materials were discussed. Rare earth additives can effectively improve the mechanical property and engineering performance of ceramic die materials. Thus, it will have further perspectives of wider application. More attention should be paid in the future to the toughening and strengthening of the ceramic die materials, the adding forms and kinds of rare earth elements and acting mechanisms of rare earth additives in ceramic die materials.  相似文献   

6.
Fracture appearance, surface and nanomechanics properties of antibacterial ceramics contairing rare earth phosphate composite antibacterial materials were characterized and measured by SEM, AFM and Nanoindenter, respectively. Results show that grain of fracture surface of antibacterial ceramics grows uniform refinement topography of bubble break-up appears at the surface, which is flat and has liquid character, by adding the phosphate composite containing rare earth, nevertheless needle-like crystal and granular outgrowth form at fracture surface and surface of common ceramics, respectively. Young's modulus of antibacterial ceramic film is 74. 397 GPa and hardness is 8. 134 GPa, which increses by 4.4% and 1.6% comparing with common ceramics, respectively. Loading curves of two kind of ceramics have obvious nonlinear character under 700 nm and linear character between 700 ~ 1000 nm, and unloading curve have obvious linear character.  相似文献   

7.
以活性炭和碳化硅为烧结助剂,采用真空热压工艺,制备了碳化硼陶瓷材料.研究了真空热压工艺、烧结助剂对碳化硼陶瓷性能及断口的影响,结果表明,以活性炭和碳化硅为烧结助剂的碳化硼陶瓷随热压压力增加,开口孔隙度减小,相对密度和抗弯强度增加.添加活性炭的碳化硼陶瓷在热压压力为35MPa下,开口孔隙度有最小值(1.7%),相对密度(91.7%)和抗弯强度(277.6MPa)达最大值;以碳化硅为烧结助剂的碳化硼陶瓷在热压压力为30MPa下,开口孔隙度有最小值(0.66%),相对密度(91.9%)和抗弯强度(173.6MPa)达最大值.添加活性炭的碳化硼陶瓷随保温时间由30min增加到90min,开口孔隙度逐渐减小而相对密度逐渐增加(90min时分别达到0.19%、99.6%),抗弯强度先增加后减小,在保温时间为60min时抗弯强度达到最大值(351.7MPa).在相同的真空热压工艺下,添加活性炭的碳化硼陶瓷与添加碳化硅的碳化硼陶瓷相比,其开口孔隙度低,抗弯强度高.初步探讨了真空热压工艺以及添加剂促进碳化硼陶瓷烧结的机理.  相似文献   

8.

To improve the mechanical properties and performances of water-atomized powder metallurgy steels, it is necessary to enhance the density. Consolidating water-atomized steel powders via conventional pressing and sintering to a relative density level > 95 pct involves processing challenges. Consolidation of gas-atomized powders to full density by hot isostatic pressing (HIP) is an established process route but utilizing water-atomized powders in HIP involves challenges that result in the formation of prior particle boundaries due to higher oxygen content. In this study, the effect of density and processing conditions on the oxide transformations and mechanical properties from conventional press and sintering, and HIP are evaluated. Hence, water-atomized Cr–Mo-alloyed powder is used and consolidated into different density levels between 6.8 and 7.3 g cm−3 by conventional die pressing and sintering. Fully dense material produced through HIP is evaluated not only of mechanical properties but also for microstructural and fractographic analysis. An empirical model based on power law is fitted to the sintered material properties to estimate and predict the properties up to full density at different sintering conditions. A model describing the mechanism of oxide transformation during sintering and HIP is proposed. The challenges when it comes to the HIP of water-atomized powder are addressed and the requirements for successful HIP processing are discussed.

  相似文献   

9.
以熟焦、炭纤维、B_4C、SiC、Si、TiO_2和TiC为原料、采用原位合成及热压技术研究了不同TiO_2和TiC含量对多组分碳/陶复合材料的组成、结构和性能的影响。在烧结过程中TiO_2或TiC与B_4C反应原位生成TiB_2,Si和TiO_2分别与C反应生成SiC和TiC,这些陶瓷相的生成对提高碳/陶复合材料的力学性能有显著作用。加入TiO_2比TiC能使碳/陶复合材料在较低的温度下实现致密化烧结,获得了抗弯强度达430 MPa的碳/陶复合材料。  相似文献   

10.
Study on Microstructure of Alumina Based Rare Earth Ceramic Composite   总被引:1,自引:0,他引:1  
Analysis techniques such as SEM, TEM and EDAX were used to investigate the microstructure of rare earth reinforced Al2O3/(W, Ti)C ceramic composite. Chemical and physical compatibility of the composite was analyzed and interfacial microstructure was studied in detail. It is found that both Al2O3 and (W, Ti)C phases are interlaced with each other to form the skeleton structure in the composite. A small amount of pores and glass phases are observed inside the material which will inevitably influence the physical and mechanical property of the composite. Thermal residual stresses resulted from thermal expansion mismatch can then lead to the emergence of dislocations and microcracks. Interfaces and boundaries of different types are found to exist inside the Al2O3/(W, Ti)C rare earth ceramic composite, which is concerned with the addition of rare earth element and the extent of solid solution of ceramic phases.  相似文献   

11.
The structurization and properties of TiN-AlN and TiN-AlN-Y2O3 nanocomposites consolidated by electric-discharge sintering are examined. TiN-AlN composites with a relative density of about 98 to 99% are produced. Their structure is not homogenous and consists of TiN and AlN grains of about 200 nm in size. There are also large spherical grains of titanium nitride of 2 to 10 µm. This effect is probably caused by microdischarges between particles of the conducting phase and subsequent meltback of the interacting surfaces. The effect of yttrium oxide additives on the material structure and properties is investigated. It is shown that TiN-AlN composites consolidated by electric-discharge sintering have high hardness (HV ~ 25 GPa) and fracture toughness (K1c ~ 6 MPa · m1/2).  相似文献   

12.
采用Ti 6Al 4V 5B4C和Ti 6Al 4V 5B4C 1Nd 两种成分的原始粉末, 反应热压后原位生成了Ti TiC TiB复合材料。经过X射线检测, 证明了试验中原位生成反应5Ti+B4C 4TiB+TiC的进行。采用摩擦磨损试验机检测了两种材料的抗磨损性能。通过扫描电子显微镜和电子探针分析了材料的磨损表面。结果表明, 添加稀土元素能提高材料的硬度, 韧性和抗磨损性能。  相似文献   

13.
The effects of Y2O3 and Sm2O3 doping on the sintering temperature, microstructure and mechanical behaviors of Al2O3 ceramics were investigated. The experimental results show that the sintering temperature can be decreased and the mechanical behavior can be improved by adding rare earth in alumina ceramics. The relative density of rare-earthdoped alumina ceramics reaches 98.8% after sintering at 1600 ℃ for 2 h, and its bending strength and fracture toughness reach 439 MPa and 5.28 MPa·m1/2,respectively.Introduction of Y2O3 and Sm2O3 in Al2O3 can restrain the growth of grains, refine the size of grains, and thus form a fine-grained structure. The fracture characteristic is the mixed modes of intergranular and transgranular fracture.  相似文献   

14.
添加剂镍对原位合成TiB2-TiC复相陶瓷材料性能的影响   总被引:2,自引:0,他引:2  
蒋军  朱德贵  王良辉  张波 《稀有金属》2003,27(4):421-425
用TiH2,Ni和B4C作为原料,采用热等静压法制备了TiB2-TiC复相陶瓷材料,此方法工艺简单。成本较低。XRD研究表明在样品中只存在TiB2和TiC两相;TEM研究结果表明TiB2晶粒为规则的多边形和板条状,添加剂Ni位于TiB2/TiC交界处;显微硬度、断裂韧性和SEM断口形貌的研究结果表明添加剂Ni显著提高了TiB2-TiC复相陶瓷材料的综合性能。  相似文献   

15.
Mixed rare earth elements were incorporated into alumina ceramic materials. Hot-pressing was used to fabricate alumina matrix composites in nitrogen atmosphere protection. Microstructures and mechanical properties of the composites were tested. It was indicated that the bending strength and fracture toughness of alumina matrix ceramic composites sintered at 1550 ℃ and 28 MPa for 30 min were improved evidently. Besides mixed rare earth elements acting as a toughening phase, AlTiC master alloys were also added in as sintering assistants, which could prompt the formation of transient liquid phase, and thus nitrides of rare earth elements were produced. All of the above were beneficial for improving the mechanical properties of alumina matrix ceramic composites.  相似文献   

16.
The poly-aminosilicone-rare earth composite was prepared by poly-aminosilicone cross-linked with rare earth and active silanol. The thermal stability of the composites was studied by thermogravimetric analysis (TG). Force condition of the composites in electric field was analyzed and relative polarizability was derived. It is found that the composites containing different rare earth ions have different relative polarizability. The experiment results reveal that organosilicon materials with different electrical performance can be obtained by this way. Meanwhile, the absorption and flourescene spectrum of composites were also investigated. Compared to rare earth chloride, the spectrum properties of the composite are changed obviously. The possible reasons for these phenomena were discussed.  相似文献   

17.
采用机械球磨和热等静压(hot isostatic press,HIP)相结合的方法制备NbC颗粒增强45CrMoV弹簧钢基复合材料(NbCp/45CrMoV),观察该材料的显微组织、增强颗粒分布和界面结合情况,检测其相对密度、硬度、拉伸性能和摩擦磨损性能,并探讨其断裂行为和磨损机理。结果表明,NbCp/45CrMoV复合材料的组织均匀细小,NbC颗粒均匀地弥散分布在基体之中,且与基体界面结合良好,相对密度达到99%以上。与45CrMoV弹簧钢相比,该材料的硬度和弹性模量增大,分别为44 HRC和208 GPa,抗拉强度略有降低,为1 250 MPa;伸长率由11%减小到2%;耐磨性能大幅提高,特别是在高载荷下,例如700 N时,质量磨损只有HIP 45CrMoV的1/4,摩擦因数有所增大。  相似文献   

18.
以氯化钇为原料,采用碳酸氢铵制备的碳酸盐,通过复合氟化剂转化生成氟化钇,经过烘干和粒子整合之后得到无水氟化钇。考察了碳酸盐晶体质量、复合氟化剂的配比和浓度、反应温度、稀土浓度、pH值等对稀土氟化物中C、O含量的影响。结果表明:在选定条件下,用复合氟化剂将碳酸钇晶体转化生成氟化稀土,可明显降低氟化稀土中C、O的含量。  相似文献   

19.
碳纳米管具有超强的力学性能和优异的物理性能(弹性模量达1.0~1.8 TPa,抗拉强度达150 GPa,密度可达0.8 g/cm~3,热膨胀系数几乎为零),是复合材料的理想增强体。通过正交试验设计研究了多壁碳纳米管(MWCNT)的添加量、烧结温度、热压压力对CuSn-Co系胎体力学性能的影响,并分别通过直接分析法和方差分析法分析了3因素对胎体力学性能的影响程度及对胎体性能影响的显著性,采用扫描电镜观察其断口形貌。结果表明:碳纳米管的添加量对胎体的硬度和抗弯强度有非常显著的影响,其次是热压压力有显著影响,而烧结温度影响较小,最终的优选方案为:MWCNT添加质量分数为0.8%,热压温度为850℃,热压压力为35 MPa。  相似文献   

20.
Modern ceramic cutting tool materials with their excellent physical, mechanical properties and cutting performances promote greatly the development of metal cutting technology.Therefore, they are one of the most promising cutting tool materials in the coming Zlst century["'l. however, the intrinsic brittleness is a fatal weakness for ceramic tool materials. In order to reduce the brittleness and to increase the strength and the fracture toughness of the cutting tool materials, various research…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号