首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Abstract

Second order effects due to the presence of a first order free oscillation at a single frequency in a variable depth rotating ocean are examined. It is found that the second order Lagrangian mean velocity (mass transport velocity) satisfies the linearized equations for unforced steady geostrophic motion. This implies that if the ocean basin is laterally bounded and contains no closed geostrophic contours, the second order Lagrangian mean velocity vanishes everywhere.  相似文献   

2.
Abstract

The flow properties of an homogeneous fluid which is bounded by two concentric spheres and two meridional planes which intersect along a diameter of the spheres are investigated. The spheres rotate about this diameter with slightly different angular velocities. As in the axisymmetric case studied by Proudman (1956) and Stewartson (1966) the viscous terms in the equations of motion are important only in boundary layers on the spheres and on the cylinder C which circumscribes the inner sphere and which has generators parallel to the axis of rotation, provided the Ekman number E is small. In the inviscid region the velocities are independent of the coordinate measuring distance along the axis of rotation and are much weaker, by a factor 0(E ½), than the velocities in the Ekman layer on the driving surface (outer sphere). (It is assumed that the reference frame is fixed in the slower rotating inner sphere.) If the separation of the spheres is small compared to their radii then the asymmetric circulation inside C is characterized by an intense jet along the western wall. Loss of fluid from this jet sustains the eastward and northward flow in the inviscid interior where motion is driven by the suction of the Ekman layer on the outer sphere. (Geophysical conventions have been adopted.) Outside C an intense current is present on the eastern, not western, wall while motion in the inviscid region is westward, and away from the axis of rotation. Though there is no transport across C in the inviscid region, the meridional transport of the Ekman layer on the outer sphere is continuous across C and increases, through suction, as the equator is approached until it drains into an eastward flowing equatorial current of width 0(E 1/7). The eastern boundary current outside C and shear layers on C carry this fluid to the intersection of C and the western wall where it feeds the western boundary current inside C.

The relation between this study and the experiments of Baker and Robinson (1970) is discussed.  相似文献   

3.
Abstract

The behavior of Rossby waves on a shear flow in the presence of a nonlinear critical layer is studied, with particular emphasis on the role played by the critical layer in a Rossby wave resonance mechanism. Previous steady analyses are extended to the resonant case and it is found that the forced wave dominates the solution, provided the flow configuration is not resonant for the higher harmonics induced by the critical layer. Numerical simulations for the forced initial value problem show that the solution evolves towards the analysed steady state when conditions are resonant for the forced wave, and demonstrate some of the complications that arise when they are resonant for higher harmonics. In relating the initial value and steady problems, it is argued that the time dependent solution does not require the large mean flow distortion that Haberman (1972) found to be necessary outside the critical layer in the steady case.  相似文献   

4.
Abstract

Applying a mixing-length calculation to potential vorticity rather than to momentum a new type of lateral friction appears in the oceanic mass transport equations. This friction is evaluated for the special case of horizontally homogeneous, quasi-geostrophic turbulence. The main effect is a westward force arising from the so-called β-term. This produces an additional southward interior transport and a strengthening of the western boundary current. A turbulent exchange coefficient KH = 108 em2s?1 is sufficient to give a Gulf Stream transport twice that obtained by the classical Sverdrup model.  相似文献   

5.
The mechanism of acceleration of the mean zonal flow by a planetary wave is explained intuitively by considering the wave drag which a corrugated bottom feels when it excites the wave. The explanation is justified by solving the problem of vertical propagation of a planetary wave packet and the second order mean motion induced around it. The discussion is slightly extended to the case of small damping, to illustrate in a compact form the fact that the mean zonal acceleration is determined by a forcing due to wave transience plus that due to wave dissipation.The mean flow induced by a steady, dissipating planetary wave is discussed, and it is shown that it depends largely on the dissipation scale-height of the wave whether the northern region is heated or cooled. For example, if the wave velocity-amplitude increases upward in spite of dissipation, the induced easterly flow increases with height and the temperature of the northern region increases relative to that in the southern region. A similar point has been made byDunkerton (1979) in connection with westerly flows induced by Kelvin waves.The Lagrangian-mean motion induced by a planetary wave is briefly discussed in connection with the mechanism of acceleration of the mean zonal flow, in the case of a slowly varying wave packet. Further, in order el elucidate the effects of wave dissipation and time dependence of wave amplitude, the results obtained for a steady, dissipating wave and for a growing baroclinic wave are mentioned.  相似文献   

6.
Abstract

It is shown that the inclusion of the nonlinear terms in the equations of motion of a coupled density front of zero potential vorticity results in wave solutions which merely propagate with time. The linear theory, on the other hand, predicts an exponential temporal growth. The nonlinear equation admits steady solutions representing standing waves whereas if the nonlinear terms are omitted no steady solutions exist. The general initial value problem is difficult to solve numerically since the linear problem is ill posed.

In addition we prove that the general similarity solution of the nonlinear equation tends to zero for large times, at any point in space, regardless of the initial condition.  相似文献   

7.
Abstract

The time‐dependent flow of a broad current over a uniformly sloping sea bottom is considered. Simple wave motions are discussed, the establishment of a steady meander is analysed, the response to slow variations in the transport of the current is explored, and the general relationship of the path of the meandering current to initial (Cauchy) data is determined. The results are used in the design of an experiment in the Gulf Stream which was performed in the summer of 1969.  相似文献   

8.
Abstract

The problem of unsteady long waves generated by any horizontal and symmetrically distributed, time-periodic surface wind on a rotating ocean is analysed for large times and distances. Uniform asymptotic estimates of the surface displacement in the unsteady state are obtained. The steady-state wave and velocity fields at any distance are also determined. Some characteristics of the unsteady and steady motions are described. Also noted are the features that distinguish the motion from its one-dimensional analogue for which a non-uniform analysis in the unsteady state along with a large-distance form of the surface elevation are already known.  相似文献   

9.
Development of thoughts on tracer transport mechanisms in the stratosphere which lead to new approaches to two-dimensional modeling of the tracer problem is reviewed.Three-dimensional motions of individual air parcels affected by a planetary wave are investigated theoretically, treating a steady, upward propagating wave in a uniform flow. It is shown that trajectories of air parcels are of elliptical form when projected onto the meridional plane and that they have no mean meridional or vertical motion, even though the usual zonal Eulerian-mean vertical motion exists. The origin of the difference between the mean air parcel motion and the Eulerian-mean motion is discussed.On the basis of the knowledge of air parcel motion, two approaches to two-dimensional modeling are considered. The generalized Lagrangian mean motion (quasi-zonal weighted mean taken over a meandering material tube), recently introduced by Andrews and McIntyre, is identical with the mean motion of an air parcel in a steady state. Such a mean meridional circulation may be used for advecting a tracer in the meridional plane in a two-dimensional model. The transport effect is represented solely by the advection and an eddy transport does not appear in this scheme, to a first approximation.The finding that trajectories of air parcels are elliptical necessitates a reexamination of the Reed-German eddy diffusivity currently used in two-dimensional chemical-dynamical models. By applying a mixing length type hypothesis, we derive an eddy diffusivity formula for use in Eulerian-mean calculations, which, in the case of a conservative tracer is dominated by an anti-symmetric tensor. The eddy transport due to this anti-symmetric tensor diffusivity is of advective type (not diffusive) and has the effect of taking the Stoke drift effect into account, when used in the usual Eulerian-mean formulation.  相似文献   

10.
Vortex evolution     
Abstract

Friedmann's equation and the potential vorticity equation are generalised for turbulent motion. The generalised equations incorporate some new phenomena connected with turbulent transport of mass. It is proved that, if ?×[S×Ω+S(?·S)]≠0 where Ω is the absolute vorticity of the velocity and S is the turbulent density flux, then the Helmholtz-Kelvin theorem concerning the conservation of the velocity circulation around a closed path is violated and the potential vorticity is not a Lagrangian adiabatic invariant. The effects of this turbulent transport of mass on the creation or dissipation of vorticity discussed here is not equivalent to effects of baroclinicity or viscosity. Some possible implications of the new circulation theorem in geophysical and astrophysical fluid dynamics are discussed.  相似文献   

11.
Abstract

The process of wave steepening in Long's model of steady, two-dimensional stably stratified flow over orography is examined. Under conditions of the long-wave approximation, and constant values of the background static stability and basic flow, Long's equation is cast into the form of a nonlinear advection equation. Spectral properties of this latter equation, which could be useful for the interpretation of data analyses under mountain wave conditions, are presented. The principal features, that apply at the onset of convective instability (density constant with height), are:

i) a power spectrum for available potential energy that exhibits a minus eight-thirds decay, in terms of the vertical wavenumber k z -;

ii) a rate of energy transfer across the spectrum that is inversely proportional to the wavenumber for large k z -;

iii) an equipartition between the kinetic energy of the horizontal motion and the available potential energy, under the longwave approximation, although all the disturbance energy is kinetic at the point where convective instability is initiated. It is also shown that features i) and ii) apply to more general conditions that are appropriate to Long's model, not just the long-wave approximation. Application to fully turbulent flow or to conditions at the onset of shearing instability are not considered to be warranted, since the development only applies to conditions at the onset of convective instability.  相似文献   

12.
An experimental and theoretical identification of hydrodynamic equilibrium for sediment transport and bed response to wave motion are considered. The comparison between calculations and the results of laboratory experiments indicates the linear relation between sediment transport rate and the thickness zm of bed layer in which sediments are in apparent rectilinear motion. This linear relationship allows to use the first order “upwind” numerical scheme of FDM ensuring an accurate solution of equation for changes in bed morphology. However, it is necessary to carry out a decomposition of the sediment transport into transport in onshore direction during wave crest and offshore direction during wave trough. Further, the shape of bed erosion in response to sediment transport coincides with the trapezoid envelope or with part of it, when some sediments still remain within it. Bed erosion area is equal to the one of a rectangle with thickness znm.  相似文献   

13.
Abstract

Starting from Euler's equations of motion a nonlinear model for internal waves in fluids is developed by an appropriate scaling and a vertical integration over two layers of different but constant density. The model allows the barotropic and the first baroclinic mode to be calculated. In addition to the nonlinear advective terms dispersion and Coriolis force due to the Earth's rotation are taken into account. The model equations are solved numerically by an implicit finite difference scheme. In this paper we discuss the results for ideal basins: the effects of nonlinear terms, dispersion and Coriolis force, the mechanism of wind forcing, the evolution of Kelvin waves and the corresponding transport of particles and, finally, wave propagation over variable topography. First applications to Lake Constance are shown, but a detailed analysis is deferred to a second paper [Bauer et al. (1994)].  相似文献   

14.

Nonlinear internal gravity waves in a slightly dissipative, slightly compressible fluid are discussed for the case when the properties of the medium vary slowly on a scale determined by the local wave structure. A two‐timing technique is used to obtain transport equations which describe the changes in amplitude, phase and mean flow of a wave packet. Various solutions of these transport equations are discussed, with relevance to critical layer absorption.  相似文献   

15.
The interaction between two important mechanisms which causes streaming has been investigated by numerical simulations of the seabed boundary layer beneath both sinusoidal waves and Stokes second order waves, as well as horizontally uniform bottom boundary layers with asymmetric forcing. These two mechanisms are streaming caused by turbulence asymmetry in successive wave half-cycles (beneath asymmetric forcing), and streaming caused by the presence of a vertical wave velocity within the seabed boundary layer as earlier explained by Longuet-Higgins. The effect of wave asymmetry, wave length to water depth ratio, and bottom roughness have been investigated for realistic physical situations. The streaming induced sediment dynamics near the ocean bottom has been investigated; both the resulting suspended load and bedload are presented. Finally, the mass transport (wave-averaged Lagrangian velocity) has been studied for a range of wave conditions. The streaming velocities beneath sinusoidal waves (Longuet-Higgins streaming) is always in the direction of wave propagation, while the streaming velocities in horizontally uniform boundary layers with asymmetric forcing are always negative. Thus the effect of asymmetry in second order Stokes waves is either to reduce the streaming velocity in the direction of wave propagation, or, for long waves relative to the water depth, to induce a streaming velocity against the direction of wave propagation. It appears that the Longuet-Higgins streaming decreases as the wave length increases for a given water depth, and the effect of wave asymmetry can dominate, leading to a steady streaming against the wave propagation. Furthermore, the asymmetry of second order Stokes waves reduces the mass transport (wave-averaged Lagrangian velocity) as compared with sinusoidal waves. The boundary layer streaming leads to a wave-averaged transport of suspended sediments and bedload in the direction of wave propagation.  相似文献   

16.
Abstract

The flow in a mechanically driven thin barotropic rotating fluid system is analysed. The linear theory of Baker and Robinson (1969) is modified and extended into the non-linear regime.

An internal parameter, the “local Rossby number”, is indicative of the onset of nonlinear effects. If this parameter is 0(1) then inertial effects are as important as Coriolis accelerations in the interior of the transport-turning western boundary layer and both of its Ekman layers. The inertial effects in the Ekman layers, ignored in previous explorations of non-linear wind driven oceanic circulation, are retained here and calculated using an approximation of the Oseen type. The circulation problem is reduced to a system of scalar equations in only two independent variables; the system is valid for non-small local Rossby number provided only that the approximate total vorticity is positive.

To complete the solution for small Rossby number a boundary condition for the inertially induced transport is needed. It is found by examining the dynamics controlling this additional transport from the western boundary layer as the transport recirculates through the rest of the ocean basin. The strong constraint of total recirculation within the western boundary layer (zero net inertial transport) is derived.

The calculated primary inertial effects are in agreement with the observations of the laboratory model of Baker and Robinson (1969).

The analysis indicates the extent to which three-dimensional non-linear circulation can be reduced to a two dimensional problem.  相似文献   

17.
ABSTRACT

The generation processes and potential energy sources of internal solitary waves (ISWs) in the southern Taiwan Strait are investigated by driving a high resolution non-hydrostatic numerical model with realistic background conditions. Two main types of ISWs are clarified according to their different energy sources. One is generated by the nonlinear disintegration of remote internal tides emanating from Luzon Strait, and the other type is generated by local tide-topography interaction at the continental slope. The basic properties and evolution processes differ between these two kinds of ISWs. The waves originated from the remote internal tides at Luzon Strait have amplitudes comparable to previous field observations. In contrast, the ISWs generated locally are much weaker than observed waves, even in the presence of a steady offshore background current, which intensifies the generation of onshore ISWs. The ISWs induced by remotely generated M2 internal tides are stronger than those induced by K1 internal tides, and the fraction of internal wave energy transmitted onto the shelf is not significantly influenced by the intensity of remotely generated internal tides.  相似文献   

18.

The pattern and propagation of waves generated by steady or oscillatory disturbances travelling horizontally in a rotating, stratified fluid are studied following a technique developed by Lighthill. Both two‐ and three‐dimensional distrubances are investigated. The results show how rotation modifies internal wave patterns in a stratified fluid and how stratification modifies inertial wave patterns in a rotating fluid. The results are used to compute the effective diminution of Taylor column length due to the presence of density stratification. They also show that the appearance of wave crests upstream of a disturbance is possible only when the disturbance is unsteady and that observations of upstream blocking in a two‐dimensional stratified flow can be explained by the existence of a certain class of plane waves as modified by viscosity.  相似文献   

19.
Abstract

The normal mode instability of steady Wu-Verkley (1993) wave and modons by Verkley (1984, 1987, 1990) and Neven (1992) is considered. All these flows are solutions to the vorticity equation governing the motion of an ideal incompressible fluid on a rotating sphere. A conservation law for infinitesimal perturbations to each solution is derived and used to obtain a necessary condition for its exponential instability. By these conditions, Fjörtoft's (1953) average spectral number of the amplitude of an unstable mode must be equal to a specific number that depends on the degree of the solution in its inner and outer regions as well as on spectral distribution of the mode energy in these regions. Some properties of the conditions for different types of modons are discussed. The maximum growth (and decay) rate of the modes is estimated, and the orthogonality of the amplitude of each unstable, decaying, or non-stationary mode to the basic solution is shown in the energy inner product.

The new instability conditions confine the unstable disturbances of the WV wave and modon to a hypersurface in the perturbation space and allow interpretation of their energy structure. They are also useful both in estimating the maximum growth rate of unstable modes and in testing the numerical algorithms designed for the linear stability study.  相似文献   

20.
Abstract

A spectral low-order model is proposed in order to investigate some effects of bottom corrugation on the dynamics of forced and free Rossby waves. The analysis of the interaction between the waves and the topographic modes in the linear version of the model shows that the natural frequencies lie between the corresponding Rossby wave frequencies for a flat bottom and those applying in the “topographic limit” when the beta-effect is zero. There is a possibility of standing or eastward-travelling free waves when the integrated topograhic effect exceeds the planetary beta-effect.

The nonlinear interactions between forced waves in the presence of topography and the beta-effect give rise to a steady dynamical mode correlated to the topographic mode. The periodic solution that includes this steady wave is stable when the forcing field moves to the West with relatively large phase speed. The energy of this solution may be transferred to the steady zonal shear flow if the spatial scale of this zonal mode exceeds the scale of the directly forced large-scale dynamical mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号