首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
采用快凝甩带技术制备了6组不同Ti含量的(Al-10Si-20Cu-0.05Ce)-xTi急冷箔状钎料,并对SiCp/6063Al复合材料进行真空钎焊,然后对钎料及接头的显微组织和性能进行分析。结果表明,急冷箔较常规铸态钎料的组织细小、均匀;固、液相线降低,熔化区间变窄;随着Ti含量的增加,急冷箔中片状Al-Si-Ti金属间化合物相增多,导致钎料脆性增加;6组钎料在复合材料上润湿性较差,但在6063Al合金上润湿性良好。在580℃钎焊温度、保温30min条件下,采用1%Ti含量急冷箔状钎料成功连接了SiCp/6063Al复合材料,钎焊接头组织致密、完整,急冷箔状钎料与6063Al合金基体连接界面可进行充分的冶金结合,且接头剪切强度达到104.9 MPa;钎焊前采用夹具增加接头压力可显著提高接头的连接质量。  相似文献   

2.
This paper examines the effect of different Ce content on the properties and microstructures of Zn–22Al filler metals and Cu/Al brazing joints. The results indicate that, the spreading area on Cu substrates of Zn–22Al filler metal could be improved by 29.7% with the addition of 0.03 wt% Ce, whereas the oxidation resistance of the alloy increased significantly. The thermal behaviors of Zn–22Al filler metals were minimally influenced by the addition of Ce. The Zn–22Al–xCe filler metals show finer and more uniform microstructures when the added Ce content is in the range 0.03–0.05 wt%. Particularly, the addition of trace Ce into the Zn–22Al filler metal can refine the microstructures and decrease the thickness of the layer of intermetallic compounds produced in the Cu/Al brazing joints. Some bright (Zn,Al)–Ce intermetallic compounds particles were observed in the alloy when the Ce content exceeds 0.08 wt%. The results also indicate that the shear strength of Cu/Al joint brazed with Zn–22Al–0.05Ce is 30.3% higher than that of the Zn–22Al filler metal. Some hard and brittle Ce-bearing intermetallic compounds particles appear in the fracture surface when the Ce content is 0.25 wt%, which resulted in the weakening of the mechanical properties of Cu/Al brazing joints.  相似文献   

3.
A new method for dispersing homogeneously fine ceramic powders into a particulate alloy matrix has been developed. The Al-Li matrix alloy, with controlled crystal grain size and shape, shows superplastic behaviour under certain conditions. The homogeneous dispersion of SiC in the matrix alloy was achieved by introducing the fine particles of filler along the grain boundaries within the alloy particles. This new compounding method yields a composite powder (i.e. each particle itself is a composite) rather than a mixture of different components.  相似文献   

4.
钛合金在经济性和加工性方面不理想,导致其在实际工程应用中受限,而铝合金在某种程度上可以弥补这种缺陷,因此将钛合金和铝合金复合使用的构想应运而生。对钛合金和铝合金异种金属的可焊性进行了分析,以钛合金和铝合金钎焊为研究对象,重点论述了钛合金与铝合金钎焊连接所用的钎料及工艺等的国内外研究现状,并着重分析了Al基和Zn基钎料的润湿性、界面、钎缝组织及其优缺点。由相关文献分析可知,Al基钎料在真空、保护气氛或非真空外加辅助措施条件下对钛合金和铝合金都有良好的润湿性,但接头强度仍有待提高,金属间化合物较厚的问题需要通过优化钎料成分和焊接工艺进一步改善;Zn基钎料对钛合金的润湿性较差,但在适当的焊接工艺下可以获得力学性能较好的Ti/Al接头,剪切强度可达141MPa;使用Sn基和Cu基钎料获得的Ti/Al接头的力学性能低于Al基和Zn基钎料,且Sn基的钎料对两种母材的润湿性都较差,需要对母材表面进行预处理。  相似文献   

5.
微量Sc和Zr对Al—Az—Mg合金组织与性能的影响   总被引:9,自引:0,他引:9  
采用铸锭冶金法制备了Al-6.2Zn-2.0Mg-0.25Zr和Al-6.2Zn-2.0Mg合金,测试不同处理态的拉伸力学性能。利用金相显微镜和透射电子显微镜研究其不同处理态的显微组织,结果表明:添加微量Sc和Zr可明显细化合金的铸态晶粒,并显著提高Al-Zn-Mg合金的力学性能,其作用机理主要为Al3(Sc,Zr)造成的细晶强化,亚结构强化和弥散强化。  相似文献   

6.
Alloy 2060-T8 is a newly developed high-strength Al–Li alloy for applications in aircraft industry. Crack-free welds were obtained in laser beam welding with 5087 filler wire under optimized welding conditions. In this paper, fusion zone microstructure and joint mechanical properties were investigated. Microstructure typical for the weld metal consists of α-Al matrix with a few nanoscale precipitates inside and a coarse icosahedral quasicrystalline T2 phase at the dendritic and grain boundaries. The quasicrystalline occurred normally in Al–Li–Cu alloys with higher Li contents. Our investigations show that the icosahedral quasicrystalline phase T2 phase forms in the laser-welded Al–Li alloy 2060 with lower Li content as a result of segregation and replacement of Mg element. The joint tensile strength in as-welded condition is around 317 MPa, about 63% of that of the base metal, and fracture occurs within the fusion zone.  相似文献   

7.
Al-Ti异种合金真空钎焊的研究   总被引:9,自引:0,他引:9  
在结合界面上生成层状的脆而硬的金属化合物(TiAl3,TiAl和Ti3Al)是Al-Ti异种合金焊接所存在的主要问题,本工作基一协内外研究成果和相关资料,利用正蛟设计在理,以Al-11.5Si近共晶合金为基,通过添加元素Sn和Ga形成9种钎料,并利用各新钎料对Al合金和Ti合金进行了真空钎焊,勇于强度试验和铺展性试验,对该9种钎料进行评定,试验结果表明,含10%Sn,0.20%GAa的Al-11.5Si铝基钎料铺展性和抗剪强度等方面都具有较好的性能,使Al-Ti异种合金构件达到较好的机械性能。  相似文献   

8.
A Mg–Li–Al–Zn alloy was friction stir processed (FSP) under water, and the microstructures and superplastic behavior in the FSP alloy were investigated. The FSP Mg–Li–Al–Zn alloy consisted of a mixed microstructure with fine, equiaxed, and recrystallized α (hcp) and β (bcc) grains surrounded by high-angle grain boundaries, and the average grain size of the α and β grains was ~1.6 and ~6.8 μm, respectively. The fine α grains played a critical role in providing thermal stability for the β grains. The FSP Mg–Li–Al–Zn alloy exhibited low-temperature superplasticity with a ductility of 330 % at 100 °C and high strain rate superplasticity with ductility of ≥400 % at 225–300 °C. Microstructural examination and superplastic data analysis revealed that the dominant deformation mechanism for the FSPed Mg–Li–Al–Zn alloy is grain boundary sliding, which is controlled by the grain boundary diffusion in the β phase.  相似文献   

9.
The defects and electron densities in Ti50Al50, Ti50Al48Mn2 and Ti50Al48Cu2 alloys have been studied by positron lifetime measurements. The results show that the free electron density in the bulk of binary TiAl alloy is lower than that of pure Ti or Al metal. The open volume of defects on the grain boundaries of binary TiAl alloy is larger than that of a monovacancy of Al metal. The additions of Mn and Cu into Ti-rich TiAI alloy will increase the free electron densities in the bulk and the grain boundary simultaneously, since one Mn atom or Cu atom which occupies the Al atom site provides more free electrons participating metallic bonds than those provided by an Al atom. It is also found the free electron density in the grain boundary of Ti50Al48Cu2 is higher than that of Ti50Al48Mn2 alloy, while the free electron density in the bulk of Ti50Al48Cu2 is lower than that of Ti50Al48Mn2 alloy. The behaviors of Mn and Cu atoms in TiAI alloy have been discussed.  相似文献   

10.
Rapidly solidified Al–8.5Si–25Cu–xY (wt-%, x?=?0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) foils were used as filler metal to braze Al matrix composites with high SiC particle content (SiCp/Al-MMCs), and the filler presented fine microstructure and good wettability on the composites. The joint shear strength first increased, then decreased and a sound joint with a maximum shear strength of 135.32?MPa was achieved using Al–8.5Si–25Cu–0.3Y as the filler metal. After Y exceeded 0.3%, a needle-like intermetallic compound, Al3Y, was found in the brazing seam, resulting in a dramatic decline in the shear strength of the brazed joints. In this research, the Al–8.5Si–25Cu–0.3Y filler metal foil was found to be suitable for the brazing of SiCp/Al-MMCs with high SiC particle content.  相似文献   

11.
Brazing of Ti3AI alloys with the filler metal Cu-P was carried out at 1173-1273 K for 60-1800 s. When products are brazed, the optimum brazing parameters are as follows: brazing temperature is 1215-1225 K; brazing time is 250-300 s. Four kinds of reaction products were observed during the brazing of Ti3AI alloys with the filler metal Cu-P, i.e., Ti3AI phase with a small quantity of Cu (Ti3AI(Cu)) formed close to the Ti3AI alloy; the TiCu intermetallic compounds layer and the Cu3P intermetallic compounds layer formed between Ti3AI(Cu) and the filler metal, and a Cu-base solid solution formed with the dispersed Cu3P in the middle of the joint. The interfacial structure of brazed Ti3AI alloys joints with the filler metal Cu-P is Ti3AI/Ti3AI(Cu)/TiCu/Cu3P/Cu solid solution (Cu3P)/Cu3P/TiCu/Ti3AI(Cu)/Ti3AI, and this structure will not change with brazing time once it forms. The thickness of TiCu+Cu3P intermetallic compounds increases with brazing time according to a parabolic law. The activation energy Q and the growth velocity K0 of reaction layer TiCu+Cu3P in the brazed joints of Ti3AI alloys with the filler metal Cu-P are 286 kJ/mol and 0.0821 m2/s, respectively, and growth formula was y2=0.0821exp(-34421.59/T)t. Careful control of the growth for the reaction layer TiCu+Cu3P can influence the final joint strength. The formation of the intermetallic compounds TiCu+Cu3P results in embrittlement of the joint and poor joint properties. The Cu-P filler metal is not fit for obtaining a high-quality joint of Ti3AI brazed.  相似文献   

12.
It's difficult to weld high strength thick plate since the groove is huge when using traditional arc welding, and the weld tends to be softened and large deformation could occur after multi-layer welding. All of these can affect the industrial application of high strength thick plate wielding. In this case, developing advanced welding technology and welding material is necessary to optimize the microstructure and performance of the welds. Fiber laser has many advantages such as good monochrome and high quality laser beam. In order to decrease the heat damage to the base metal from the welding heat source, low heat input is employed for welding thick plate. Fiber laser is applied in the welding of 20 mm thick Al–Zn–Mg–Cu alloy with super narrow gap filler wire. The microstructure comparison of Al–Mg–Mn alloy and Al–Mg–Mn–Zr–Er alloy welded joints reveals that a huge amount of fine equiaxed grains is formed in the weld zone of Zr and Er micro-alloying Al–Mg–Mn alloy welding wire and a great number of precipitation strengthening phases are precipitated in the weld zone after the heat treatment of welded joints in the entirety.  相似文献   

13.
Abstract

Pulsed metal inert gas welding of AZ31B magnesium alloy is carried out, and continuous butt joints of high quality are obtained at optimised parameters. The effects of parameters on weld formation and welding stability are studied. The microstructure, mechanical properties and fracture of weld beads with different filler wires are investigated. The results show that it is a stable drop transition process with optimised parameters, which belongs to globular transfer. The precipitates in fusion zone and heat affected zone (HAZ) are uniform, dispersive and almost granular. The grain size in fusion zone is fine, and the grain size does not grow too large in HAZ compared with the base metal. The ultimate tensile strength of weld beads can be 94% of base metal, and the average elongation is 11%. Dimples and coarse tearing ridges can be observed on the fracture of the weld bead.  相似文献   

14.
王鹏  高增  程东锋  牛济泰 《材料导报》2017,31(22):75-78, 94
采用快速甩带技术制备了7组(Al-33.3Cu-6.0Mg)-xNi(x=0,0.5,1.0,2.0,3.0,4.0,5.0,质量分数/%)急冷箔状钎料,分别对化学镀Ni-P合金前后的SiCp/A356复合材料进行真空扩散钎焊。通过剪切实验对钎焊接头的抗剪强度进行测定,并利用扫描电镜和能谱分析等方法对接头微观组织进行观察和分析。结果表明,当向Al-33.3Cu-6.0Mg钎料合金中添加不同含量的Ni时,其急冷钎料的固-液相线(504~522℃)变化较小;当w(Ni)=3%且在570℃、保温30min的钎焊工艺下,A356基体/钎料两界面间发生适当的互扩散和溶解现象(585℃时出现溶蚀缺欠),且部分钎料/SiC颗粒的接触界面发生Mg参与的化学反应,接头抗剪强度达到64.97 MPa;而在同种钎焊工艺下,对于化学镀Ni-P合金镀层后的SiCp/A356复合材料,其接头处A356基体/Ni-P合金镀层/钎料等接触界面易于形成富含Al、Ni的致密反应层,接头连接质量显著提高,且w(Ni)=4%时,接头抗剪强度达到79.96 MPa。  相似文献   

15.
以N i 片作为合金化填充材料对SiCP/6061A l 金属基复合材料(SiCP/6061A lMMC) 进行激光焊接, 研究了激光输出功率、焊接速度等焊接工艺参数对焊缝显微组织的影响。结果表明, 采用金属N i 片作为合金化填充材料对SiCP/6061A lMMC 进行激光焊接, 可以在一定程度上抑制SiC 颗粒的溶解及针状脆性相Al4C3 的形成, 并获得以Al3Ni 等相为增强相的焊缝显微组织, 但在焊缝心部有粗大的气孔形成。   相似文献   

16.
The effect of Cu with low contents of 10, 12, 15 wt.% on the microstructure and melting point of Al–Si–Cu–Ni alloy has been investigated. Results showed that low-melting-point properties of Al–Si–Cu–Ni alloys with low contents of Cu were attributed to disappearance of Al–Si binary eutectic reaction and introduction of Al–Si–Cu–Ni quaternary reaction. With raising Cu content from 10 to 15 wt.%, the amount of complex eutectic phases formed during low temperature reactions (Al–Cu, Al–Si–Cu and Al–Si–Cu–Ni alloy reactions) increased and the melting temperature of Al–Si–Cu–Ni filler metals declined. Brazing of 6061 aluminum alloy with Al–10Si–15Cu–4Ni (all in wt.%) filler metal of a melting temperature range from 519.3 to 540.2 °C has been carried out successfully at 570 °C. Sound joints can be obtained with Al–10Si–15Cu–4Ni filler metal when brazed at 570 °C for holding time of 60 min or more, and achieved high shear strength up to 144.4 MPa.  相似文献   

17.
Abstract

Two kinds of ternary Mg based alloys were designed to join the AZ31B magnesium alloy plates by high frequency induction soldering with argon shielding gas. The microstructures and properties of the filler metals and joints were investigated by SEM, X-ray diffraction, differential scanning calorimetry, spreading test and tensile test. The results have shown that the microstructures of Mg–31·5Al–10Sn filler metal mainly consist of Mg17Al12, Mg2Sn and a trace amount of α-Mg phases, while the microstructures of Mg–29·5Zn–1Sn filler metal include α-Mg phase and Mg7Zn3 with a trace of α-Mg and Mg2Sn phases. Both of the filler metals have narrow melting zones; however, the spreading area of the Mg–31·5Al–10Sn filler metal is much larger than that of the Mg–29·5Zn–1Sn filler metal on the AZ31B base metal. The average tensile strength of solder joints with Mg–31·5Al–10Sn filler metal is a little higher than that of the latter solder joints with Mg–29·5Zn–1Sn filler metal.  相似文献   

18.
原位反应液相线铸造半固态铝合金的晶粒长大行为   总被引:1,自引:0,他引:1  
采用原位反应液相线铸造方法制备含有少量原位TiC颗粒的7075铝合金,在其固液两相区进行二次加热保温实验,淬火固定其半固态组织后,通过扫描电镜观察合金的晶粒长大行为,并利用平均截线法测量晶粒尺寸,研究原位颗粒对晶粒长大行为的影响.结果发现,原位TiC颗粒不仅对合金的铸态组织产生细化和球化作用,而且在合金的二次加热过程中对晶粒长大行为具有明显的抑制作用,从而对优化半固态组织提供了一种有效的方法.  相似文献   

19.
Al-10.2%Si alloy when cast near the liquidus temperature has tremendous potential for producing fine grain structure. However, for casting applications, it requires casting at higher superheating, where this alloy results in large dendritic grain structure. Here, we show that, by applying intensive shearing to the liquid metal prior to casting, dendritic growth can be largely suppressed and fine grain structure can be achieved at higher casting temperature.  相似文献   

20.
Abstract

Transient liquid phase diffusion bonding has been used to join an oxide dispersion strengthened (ODS) nickel alloy (MA758) using an amorphous metal interlayer with a Ni–Cr–B–Si composition. A microstructural study was undertaken to investigate the effect of parent metal grain size on the joint microstructure after isothermal solidification. The ODS alloy was bonded both in fine grain and recrystallised conditions at 1100°C for various hold times. The work shows that the final joint grain size is independent of the parent alloy grain structure and the bonding time. However, when the alloy is bonded in the recrystallised condition and given a post-bond heat treatment at 1360°C, the joint grain size increases and a continuous parent alloy microstructure across the joint region is achieved. If MA758 is bonded in the fine grain condition and then subjected to a recrystallising heat treatment at 1360°C, the grains at the joint appear to increase in size with increasing bonding time. The joint grains are generally larger than those produced when the alloy is bonded in the recrystallised condition. The differences in microstructural developments across the joint are discussed in terms of stored strain energy of the parent metal grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号