首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 227 毫秒
1.
针对在数据分布不均匀时,由于DBSCAN使用统一的全局变量,使得聚类的效果差,提出了一种基于过滤的DBSCAN算法。该算法的思想是:在调用传统的DBSCAN算法前,先对数据集进行预处理,针对所有点的k-dist数据进行一维聚类,自动计算出不同的Eps;然后再根据每个Eps分别调用传统的DBSCAN算法,从而找出非均匀数据集的各种聚类。实验结果表明,改进算法对密度不均匀的数据能够有效聚类。  相似文献   

2.
针对基于密度的DBSCAN算法对于输入参数敏感、无法聚类多密度数据集等问题,提出了一种贪心的DBSCAN改进算法(Greedy DBSCAN)。算法仅需输入一个参数MinPts,采用贪心策略自适应地寻找Eps半径参数进行簇发现,利用相对稠密度识别和判定噪声数据,在随机寻找核对象过程中使用邻域查询方式提升算法效率,最终通过簇的合并产生最终的聚类结果。实验结果表明,改进后的算法能有效地分离噪声数据,识别多密度簇,聚类准确度较高。  相似文献   

3.
VDBSCAN:变密度聚类算法   总被引:5,自引:0,他引:5       下载免费PDF全文
传统的密度聚类算法不能识别并聚类多个不同密度的簇。对此提出了变密度聚类算法VDBSCAN,针对密度不稳定的数据集,可有效识别并同时聚类不同密度的簇,避免合并和遗漏。VDBSCAN算法的基本思想是:根据k-dist图和DK分析,对数据集中的不同密度层次自动选择一组Eps值,分别调用DBSCAN算法。不同的Eps值,能够找到不同密度的簇。4个二维数据集实验验证了VDB-SCAN算法的有效性,表明VDBSCAN算法可以有效地聚类密度不均匀的数据集,且参数Eps的自动选择方法也是有效的和健壮的。  相似文献   

4.
DBSCAN聚类算法使用固定的Eps和Minpts,处理多密度的数据效果不理想;并且算法的时间复杂度为O(n2)。针对以上问题,提出一种基于区域划分的DBSCAN多密度聚类算法。算法利用网格相对密度差把数据空间划分成密度不同的区域,每个区域的Eps根据该区域的密度计算自动获得,并利用DBSCAN算法进行聚类,提升了DBSCAN的精度;避免了DBSCAN在查找密度相连时需要遍历所有数据,从而改善了算法效率。实验表明算法能有效地对多密度数据进行聚类,对各种数据的适应力较强,效率较优。  相似文献   

5.
自适应确定DBSCAN算法参数的算法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
传统DBSCAN算法需要人为确定[Eps]和[MinPts]参数,参数的选择直接决定了聚类结果的合理性,因此提出一种新的自适应确定DBSCAN算法参数算法,该算法基于参数寻优策略,通过利用数据集自身分布特性生成候选[Eps]和[MinPts]参数,自动寻找聚类结果的簇数变化稳定区间,并将该区间中密度阈值最少时所对应的[Eps]和[MinPts]参数作为最优参数。实验结果表明,该算法能够实现聚类过程的全自动化并且能够选择合理的[Eps]和[MinPts]参数,得到了高准确度聚类结果。  相似文献   

6.
针对传统DBSCAN算法需要人工输入[Eps]和[MinPts]参数,且参数选择不合理导致聚类准确率低的问题,提出了一种改进的自适应参数密度聚类算法。采用核密度估计确定[Eps]和[MinPts]参数的合理区间,通过分析数据局部密度特点确定簇数,根据合理区间内的参数值进行聚类,计算满足簇数条件时的轮廓系数,最大轮廓系数对应的参数即为最优参数。在4种经典数据集上进行对比实验,结果表明,该算法能够自动选择最优的[Eps]和[MinPts]参数,准确率平均提高6.1%。  相似文献   

7.
DBSCAN算法的Eps和MinPts参数需要人为设定,取值不当会导致聚类结果准确度不高,且在密度分布差异大的数据集上,由于参数的全局性,错误地应用于不同密度的簇,导致不能正确地发现簇.针对以上问题,提出一种多密度自适应参数确定算法,利用经过去噪衰减后的数据集的自身分布特性生成候选Eps和MinPts参数列表,并在簇数...  相似文献   

8.
周红芳  赵雪涵  周扬 《计算机应用》2012,32(8):2182-2185
传统密度算法DBSCAN与DBRS的缺点在于时间性能和聚类精度均较低,为此,提出一种结合限定区域数据取样技术的密度聚类算法——DBLRS。该算法在不增加时间和空间复杂度的基础上利用参数Eps查找核心点的邻域点和扩展点,并在限定区域(Eps,2Eps)内进行数据抽样。实验结果表明,限定区域内选取代表点进行簇的扩充降低了大簇分裂的概率,提高了算法效率与聚类精度。  相似文献   

9.
一种改进的DBSCAN密度算法   总被引:1,自引:0,他引:1  
DBSCAN算法是一种基于密度的聚类算法,算法存在许多优点,也存在一些不足.比如对输入参数Eps敏感,DB-SCAN由于采用全局Eps值,所以在数据密度不均匀和类间距离相差比较大的情况下,聚类质量会受到很大影响.文中主要针对算法输入参数Eps以及数据密度不均匀问题加以改进,提出了一种新的数据分区方法,通过对k-dist图纵坐标距离值单维度聚类,然后对比横坐标实现分区,使每个分区的数据尽可能均匀.实验证明,改进算法明显缓解了全局Eps导致的聚类质量恶化问题,聚类结果更加准确.  相似文献   

10.
于亚飞  周爱武 《微机发展》2011,(2):30-33,38
DBSCAN算法是一种基于密度的聚类算法,算法存在许多优点,也存在一些不足。比如对输入参数Eps敏感,DB-SCAN由于采用全局Eps值,所以在数据密度不均匀和类间距离相差比较大的情况下,聚类质量会受到很大影响。文中主要针对算法输入参数Eps以及数据密度不均匀问题加以改进,提出了一种新的数据分区方法,通过对k-dist图纵坐标距离值单维度聚类,然后对比横坐标实现分区,使每个分区的数据尽可能均匀。实验证明,改进算法明显缓解了全局Eps导致的聚类质量恶化问题,聚类结果更加准确。  相似文献   

11.
结构复杂数据的半监督聚类   总被引:1,自引:0,他引:1  
基于成对限制,提出一种半监督聚类算法(SCCD),它能够处理存在多种密度结构复杂的数据且识别任意形状的簇.利用成对限制反映的多密度分布信息计算基于密度的聚类算法(DBSCAN)的邻域半径参数Eps,并利用不同参数的DBSCAN 算法处理复杂形状且密度变化的数据集.实验结果表明,SCCD 算法能在噪声环境下发现任意形状且多密度的簇,性能优于已有同类算法.  相似文献   

12.
DBSCAN算法是一种基于密度的优秀算法,能够对任意形状的数据进行聚类,且能够识别噪声数据。为了减少人工对输入参数Eps和MinPts的干预,提出了一种新的计算Eps参数的方法;同时,为了解决传统单机DBSCAN算法在大数据环境下的性能问题,基于Spark框架实现了DBSCAN算法的并行化。通过实验表明,提出的DBSCAN改进算法具有很高的准确度和稳定性;并行实现的DBSCAN算法具有很好的并行性能,适合用于处理海量数据聚类。  相似文献   

13.
基于数据分区的DBSCAN算法   总被引:34,自引:1,他引:33  
数据聚类在数据挖掘、模式识别、图像处理和数据压缩等领域有着广泛的应用。DBSCAN是一种基于密度的空间聚类算法,在处理空间数据时具有快速、有效处理噪声点和发现任意形状的聚类等优点,但由于直接对数据库进行操作,在数据量大的时间就需要较多的内存和I/O开销;此外,当数据密度和聚类间的距离不均匀时聚类质量较差,为此,在分析DBSCAN算法不足的基础上,提出了一个基于数据分区的DBSCAN算法,测试结果表  相似文献   

14.
Clustering problem is an unsupervised learning problem. It is a procedure that partition data objects into matching clusters. The data objects in the same cluster are quite similar to each other and dissimilar in the other clusters. Density-based clustering algorithms find clusters based on density of data points in a region. DBSCAN algorithm is one of the density-based clustering algorithms. It can discover clusters with arbitrary shapes and only requires two input parameters. DBSCAN has been proved to be very effective for analyzing large and complex spatial databases. However, DBSCAN needs large volume of memory support and often has difficulties with high-dimensional data and clusters of very different densities. So, partitioning-based DBSCAN algorithm (PDBSCAN) was proposed to solve these problems. But PDBSCAN will get poor result when the density of data is non-uniform. Meanwhile, to some extent, DBSCAN and PDBSCAN are both sensitive to the initial parameters. In this paper, we propose a new hybrid algorithm based on PDBSCAN. We use modified ant clustering algorithm (ACA) and design a new partitioning algorithm based on ‘point density’ (PD) in data preprocessing phase. We name the new hybrid algorithm PACA-DBSCAN. The performance of PACA-DBSCAN is compared with DBSCAN and PDBSCAN on five data sets. Experimental results indicate the superiority of PACA-DBSCAN algorithm.  相似文献   

15.
K‐means clustering can be highly accurate when the number of clusters and the initial cluster centre are appropriate. An inappropriate determination of the number of clusters or the initial cluster centre decreases the accuracy of K‐means clustering. However, determining these values is problematic. To solve these problems, we used density‐based spatial clustering of application with noise (DBSCAN) because it does not require a predetermined number of clusters; however, it has some significant drawbacks. Using DBSCAN with high‐dimensional data and data with potentially different densities decreases the accuracy to some degree. Therefore, the objective of this research is to improve the efficiency of DBSCAN through a selection of region clusters based on density DBSCAN to automatically find the appropriate number of clusters and initial cluster centres for K‐means clustering. In the proposed method, DBSCAN is used to perform clustering and to select the appropriate clusters by considering the density of each cluster. Subsequently, the appropriate region data are chosen from the selected clusters. The experimental results yield the appropriate number of clusters and the appropriate initial cluster centres for K‐means clustering. In addition, the results of the selection of region clusters based on density DBSCAN method are more accurate than those obtained by traditional methods, including DBSCAN and K‐means and related methods such as Partitioning‐based DBSCAN (PDBSCAN) and PDBSCAN by applying the Ant Clustering Algorithm DBSCAN (PACA‐DBSCAN).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号