首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用脉冲电沉积法制备纳米晶镍镀层,利用扫描电镜、透射电镜及XRD对不同糖精钠浓度下制得的镍镀层的微观结构进行了表征,采用显微硬度计、DSC及全电位测试仪对镀层的硬度、热稳定性和耐蚀性进行研究.结果表明:镍镀层晶粒尺寸随着糖精钠浓度升高先增后降,浓度为10 g/L时晶粒尺寸最小;当浓度低于15 g/L时,镀层表面较为光滑、明亮;镍镀层的显微硬度在糖精钠浓度为10 g/L时达到最大值,显微硬度与平均晶粒尺寸的关系基本符合Hall-Petch方程;镍层晶粒的失稳长大温度随糖精钠浓度的增加在305℃上下波动;当糖精钠浓度为10 g/L时,镍层的耐蚀性最好.  相似文献   

2.
目的电沉积技术制备Ni-Cr-Graphene复合沉积层,调查不同Cr颗粒浓度对复合沉积层组织结构及性能的优化影响。方法利用电沉积技术在镍铝青铜(NAB)表面制备出Ni-Cr-Graphene复合沉积层。采用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)与拉曼光谱仪(Raman),对复合沉积层的形貌、成分与组织结构(晶粒大小、结晶形状及结晶织构)进行表征,并采用显微硬度计与电化学工作站分别对沉积层的硬度及耐腐蚀性能进行调查。结果Graphene颗粒使得纯Ni沉积层中的Ni晶粒尺寸由175.3 nm减小到Ni-0Cr-4Graphene沉积层中的Ni晶粒尺寸60.5nm。随着Cr颗粒质量浓度进一步从0g/L增加到100 g/L,Ni-Cr-Graphene复合沉积层中的Cr质量分数从0%增加到23.8%,且Ni晶粒尺寸进一步减小到Ni-100Cr-4Graphene沉积层的29.1nm,Ni[200]结晶织构被消除。Graphene与Cr颗粒显著提高了Ni-CrGraphene复合沉积层的表面硬度,所有复合沉积层的显微硬度均高于纯Ni沉积层(260.1HV0.2),且在100 g/L Cr颗粒浓度下,沉积层平均显微硬度为489.8HV0.2。同时Graphene与Cr颗粒改善了Ni-Cr-Graphene复合沉积层在3.5%NaCl溶液中的耐腐蚀性能,在100 g/L Cr颗粒浓度下,复合沉积层的自腐蚀电位(Ecorr)为-0.21 V,自腐蚀电流密度(Jcorr)为0.25μA/cm^2,其相对纯Ni沉积层Jcorr(7.01μA/cm^2)降低了1个数量级。结论溶液中Cr颗粒浓度的增加引起了Ni-Cr-Graphene复合沉积层中Cr含量的增加,使得更多Cr颗粒与Graphene颗粒共同作为Ni金属结晶形核点,促进了Ni的晶粒细化与织构转变,最终提高了复合沉积层的硬度与耐腐蚀性能。  相似文献   

3.
Fe38Ni30Si16B14V2 amorphous composite coatings were fabricated by laser cladding on AISI 1045 steel in order to increase the wear resistance. The phase and microstructure of the coatings were analyzed by X-ray diffractometry and transmission electron microscopy. The wear properties of the coatings were also investigated by means of sliding wear test. The results show that the coating consists of amorphous phase in majority and nanocrystalline phase in minority. The amorphous coatings can be obtained while the scanning speed is 3 500 mm/min and the laser power is 4.8 kW. With increase of the laser power, the amorphous phase in the coating increases when it is lower than 4.8 kW. A gradient distribution of the microhardness ranges from Hv0.2 1 208 to Hv0.2 891 in the coating from top surface of the coating to the substrate. The amorphous coating is found to possess better property of wear than AISI 1045 steel substrate.  相似文献   

4.
Low Zr (S1) and high Zr (S2) quaternary Cr–Zr–(Al–)N coatings with increasing Al content were deposited by d.c. reactive magnetron sputtering. The structure, fracture cross-section morphology and mechanical properties of the coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), nanoindentation, scratch testing and Vickers micro-indentation testing. All the coatings present an fcc NaCl-type B1 structure; in the low Zr content coatings, the diffraction peaks shift towards higher angles as the Al content increases. The grain size is approximately constant in a range from 6 to 8 nm, except for high Zr content films where a significant decrease in crystalline order is observed (grain size ~ 2.5 nm). In both series, the microstructure changed from equiaxed to columnar with increasing Al content. The highest hardness and strongest adhesion values were achieved in coatings with lower Zr and Al content. Conversely, the coatings with high Zr and the highest Al content exhibited an abrupt decrease in hardness, adhesion strength and toughness.  相似文献   

5.
电弧功率对液料等离子喷涂TiO2纳米涂层结构的影响   总被引:2,自引:0,他引:2  
采用液料等离子喷涂法,在不同电弧功率条件下,用含有0.2w(钛酸丁酯)的乙醇溶液为喷涂材料,制备了TiO2涂层。用扫描电镜、透射电镜和X射线衍射仪分析了涂层的显微组织结构与晶型结构,计算了涂层中的锐钛矿相相对含量与晶粒尺寸。结果表明,液料等离子喷涂TiO2涂层为纳米颗粒堆积形成的纳米结构涂层,涂层由锐钛矿相和金红石相两相构成。涂层中锐钛矿相含量可超过70%,并随着电弧功率的增大而减小。涂层中TiO2晶粒的平均尺寸为20~60nm且随电弧功率的增大而增大。  相似文献   

6.
Co‐TiO2 nanocomposite coatings with various contents of TiO2 nanoparticles were prepared by electrodeposition in Co sulfate plating bath containing TiO2 nanoparticles. The influence of the TiO2 nanoparticles concentration in the bath, of the current density and of sodium dodecyle sulfate (SDS) as anionic surfactant on the morphology, composition, texture, roughness, and microhardness of the coatings was investigated. The morphology and composition of coatings were studied by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The phase structure of coatings was analyzed by X‐ray diffraction (XRD). The results showed that the maximum codeposition of TiO2 nanoparticles in Co matrix was around 4.5 vol% obtained in 60 g/L TiO2 in the bath, 30 mA/cm2 and 0.15 g/L SDS. The microhardness of coatings was increased up to 504 Hv by increasing TiO2 concentration in the bath to 60 g/L TiO2. The electrochemistry tests including potentiodynamic polarization and impedance spectroscopy revealed that by addition of TiO2 into Co matrix, the corrosion current density, polarization resistance, and charge transfer resistance of Co‐TiO2 coating were increased compared with Co coating.  相似文献   

7.
Twelve commercially available WC-Co powders with different average WC grain sizes (0.2, 2, and 6 μm) and cobalt contents (8, 12, 17 and 25 wt.%) were sprayed on carbon steel substrates using High Velocity Oxy-Fuel (HVOF) spraying process. Hardness, Young's modulus, and fracture toughness of the coatings were measured. While the hardness and Young's modulus decreased with increasing cobalt content from 1600 to 1100 Hv and from 400 to 300 GPa respectively, the fracture toughness remained in the range from 4 to 6 MPam1/2. The coatings with 2 μm carbide showed lower hardness than those deposited from 0.2 and 6 μm carbide. These measured mechanical properties were discussed with the help of microstructures of the coatings investigated by scanning electron microscopy, X-ray diffraction and chemical analysis. Finally, the hardness of the binder phase in these coatings was estimated to range from 1000 to 1300 Hv by applying the mixture rule for composites to the experimental data, demonstrating that such hardening of the binder phase is a key factor affecting the mechanical properties of the coatings.  相似文献   

8.
Properties of Si3N4/Ni electroplated nanocomposite such as corrosion current density after long time immersion,roughness of obtained layer and distribution of nanometric particulates were studied.Other effective factors for fabrication of nanocomposite coatings were fixed for better studying the effect of the average size of nanoparticulates.The effects of the different average size of nanometric particulates(ASNP)from submicron scale(less than 1μm)to nanometric scale(less than 10 nm)were studied.The nanostructures of surfaces were examined by scanning electron microscopy(SEM),transmission electron microscopy(TEM)and atomic force microscopy(AFM).Corrosion rates of the coatings were determined using the Tafel polarization test.It is seen that decreasing the ASNP will lead to lower corrosion current densities;however,in some cases,pitting phenomena are observed.The roughness illustrates a minimum level while the distribution of nanometric particulates is more uniform by decreasing the ASNP.The effects of pulsed current on electrodeposition(frequency,duty cycle)and concentration of nanoparticulates in electrodeposition bath on trend of obtained curves have been discussed.Response surface methodology was applied for optimizing the effective operating conditions of coatings.The levels studied were frequency range between 1 000 and 9 000 Hz,duty cycle between 10%and 90%and concentration of nanoparticulates of 10-90 g/L.  相似文献   

9.
Nanocrystalline nickel coating was synthesized by direct current electrodeposition from a Watts bath at the current density of 100 mA/cm2 and pH = 4. The effect of saccharin addition (0-10 g/l) and bath temperature (45-65 °C) on the average grain size of the deposits was investigated by XRD technique. The results showed that the average grain size decreased from 426 nm to 25 nm as the saccharin concentration increased from 0 to 3 g/l, while further increase in saccharin concentration had no significant effect. Theoretical model also indicated a non-linear function for dependence of grain size on saccharin concentration, which was in accordance with experimental results. The experimental results showed that the increases in the bath temperature had no considerable effect on the average grain size of the deposits. A theoretical formula was also established for the temperature dependence of the grain size.  相似文献   

10.
Partially amorphous Fe75Si15B10 coatings were prepared from nanostructured feedstock powders by using high velocity oxy-fuel spraying. Scanning electron microscopy, X-ray diffraction, Vickers indenter and magnetic measurements were used to investigate microstructural, structural, microhardness and magnetic properties of the coatings. The Rietveld refinement of the X-ray diffraction patterns reveals the presence of an amorphous phase, nanocrystalline α-Fe(Si,B) structure having a lattice parameter close to 0.2841 nm and an average crystallite size of about 78-83 nm in addition to small amounts of Fe3O4 oxide (104 nm) and Fe2B boride (151 nm), which disappear completely with increasing coating thickness. Coercivity and microhardness values are 15.5 Oe and 478 Hv, respectively, for 84 μm thickness.  相似文献   

11.
Ni-Cr nanocomposite coatings with different Cr particles contents were developed by electrodeposition method from a nickel sulfate solution containing different concentrations of Cr nanoparticle with an average particle size of 40 nm. The characteristics of the coatings were assessed by scanning electron microscopy and microhardness test. The friction and wear performances of Ni-Cr nanocomposite coatings and pure Ni film were comparatively investigated, with the effect of the Cr content on the friction and ...  相似文献   

12.
利用纳米钯/β-环糊精复合物修饰镍钢电极(Pd/β-CD/TCh/Ni-Fe)制备了2,6-二氯苯酚(2,6-DCP)传感器。修饰电极的制备通过三个步骤:采用电化学方法将带正电的硫胆碱共价修饰到镍钢表面(TCh/Ni-Fe);将β-环糊精(β-CD)通过静电吸附自组装在TCh/Ni-Fe表面(β-CD/TCh/Ni-Fe);通过双电位阶跃法,将纳米钯沉积在β-CD/TCh/Ni-Fe表面。采用场发射扫描电镜、X-晶体衍射、X-射线光电子能谱及电化学技术表征了该修饰电极的特性。结果显示:纳米钯呈麦穗状,均匀地沉积在电极表面,粒径为17.2±4nm。Pd/β-CD/TCh/Ni-Fe电极对2,6-DCP的氧化还原有较强的电催化作用,在1×10-6~1×10-4 mol·L-1的浓度范围内,2,6-DCP的氧化峰电流与其浓度呈良好的线性增长关系[i(A)=2.8×10-3+11.9 Cx(mol·L-1),R=0.996,检测限:1×10-9 mol·L-1(3σ)]。  相似文献   

13.
The aim of this work was to investigate the effect of current density on the grain size of electrodeposited nickel coatings. For this purpose, nanocrystalline nickel coatings were deposited from a Watts bath containing 5 g/l sodium saccharin as an additive, by direct current electroplating at different current densities. X-ray diffraction analysis and modified Williamson–Hall relation were used to determine the average grains size of the coatings. The experimental results showed that the coating grains size decreased sharply by increasing the current density from 10 mA/cm2 to 75 mA/cm2. Nanocrystalline nickel coating with average grain size smaller than 30 nm can be achieved at the current densities higher than 50 mA/cm2. Furthermore, a general and simple theoretical model based on atomistic theory of electrocrystallization has been made in order to find out the relationship between the grain size and current density. According to this model the variation of log (d) versus log (i) was linear which is in accordance with experimental results for the current densities lower than 75 mA/cm2.  相似文献   

14.
通过热分解法在Ti基体上制备了不同Sn含量的IrO2-SnO2涂层。采用循环伏安(CV),恒流充放电和透射电镜(TEM)等测试方法分析了涂层的电容性能和组织结构的关系。结果表明,所制备的IrO2-SnO2涂层电极的比电容随Sn含量的增加呈先增后减的变化,电极材料的可逆性和快速充放电性能逐渐得到改善。在Sn含量为70mol%时,有最大的比电容值485.07F/g。该涂层以非晶态结构为主,其中含有尺寸分布均匀,大小约1nm的微晶,增大了活性点的面积,比纯IrO2电极的比电容提高了7.5倍。  相似文献   

15.
The nanocrystalline NiAl intermetallic compound was synthesized by mechanical alloying of the elemental powders. The structural changes of powder particles during mechanical alloying were studied by X-ray diffractometery, scanning electron microscopy and microhardness measurements. The mechanical alloying resulted in the gradual formation of nanocrystalline NiAl with a grain size of 20 nm. It was found that NiAl phase develops by continuous diffusive reaction at Ni/Al layers interfaces. The NiAl compound exhibited high microhardness value of about 1035 Hv.  相似文献   

16.
Anodic coatings were prepared by micro-arc oxidation on AZ91HP magnesium alloys in a base solution containing 10 g/L NaOH and 12 g/L phytic acid with addition of 0-8 g/L sodium tungstate. The effects of sodium tungstate on the coating thickness, mass gain, surface morphology and corrosion resistance were studied by eddy current instrument, electronic scales, scanning electron microscope and immersion tester. With the addition of sodium tungstate, the electrolytic conductivity increases and the final voltage decreases. The sodium tungstate has a minor effect on the coating thickness, but lightens the coating color. With increasing sodium tungstate concentration, the size of micropores on the coatings is enlarged and the corrosion resistance of the anodized samples decreases.  相似文献   

17.
可溶性阳极电刷镀纳米晶Ni-Fe合金镀层的退火再强化   总被引:1,自引:0,他引:1  
采用可溶性Ni阳极电刷镀方法制备纳米晶Ni-Fe合金镀层,利用XRD、SEM、TEM、显微硬度计等测试方法分析低温退火对镀层结构和性能的影响.结果表明:纳米晶Ni-Fe合金镀层的硬度随退火温度的升高而提高,在200 ℃时达到最大值,存在明显的退火再强化;继续提高退火温度导致镀层硬度降低;400 ℃退火后的镀层硬度与镀态的接近;纳米晶Ni-Fe合金镀层退火过程没有出现晶粒异常长大,表现出比纯Ni镀层更高的热稳定性.  相似文献   

18.
In this paper, nanostructured Fe-Ni coatings were successfully coated onto steel substrates by electrodeposition method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) were all employed to characterize nanostructured coatings. Our results showed that with increasing the Ni content in various coatings more homogeneous structures were obtained. Coatings with a higher Fe content had brilliant surfaces and tightly bonded to the substrates. Furthermore, utilizing argon gas during the coating procedure reduced the amount of cavities on the surface of coatings. The coatings had different morphologies depending on the current density and Ni content of the solutions. With optimizing the coating procedure parameters, a coating with star-like morphology and crystallite size of about 16 nm was obtained.  相似文献   

19.
This paper studied the dispersion of Detonation Nano-diamond(DND)in acid medium,then well dispersed DND suspension with different concentrations were added to the trivalent chromium electrolyte.The chromium and chromium-nanodiamond composite coatings were prepared by composite plating process.Scanning electron microscopy(SEM) confirmed the presence of composite coatings and Energy Dispersive X-ray Analysis(EDX)revealed the composition,the effect of coating time on microhardness of chromium coatings and chromium-nanodiamond coatings were disscussd.It is found that the addition of nanodiamond increases the microhardness of the coatings.When the concentration of DND in electrolyte is 2.0-3.0 g/L,the plating time is about 15-20 min,the maximum hardness is obtained.  相似文献   

20.
为了改善AZ91镁合金的表面性能,在含0-15g/LSiC纳米颗粒的改进的瓦特槽中,采用脉冲电沉积得到不同SiC含量的Ni-SiC纳米复合涂层。采用扫描电子显微镜(SEM)研究涂层的形貌,采用能谱仪(EDs)测试涂层的SiC含量。从15g/LSiC槽中电沉积得到的样品,其涂层的显微硬度提高了600%。采用动电位极化法研究包覆AZ91镁合金的腐蚀行为。结果表明,样品的耐腐蚀性能明显提高,即腐蚀电流密度从未包覆样品的0.13mA/cm2降低到槽中含15∥LSiC电沉积包覆样品的1.74x101mA/cm2,腐蚀电位从未包覆样品的-1.6V增加到槽中电沉积包覆样品的-0.31V。使用盘销摩擦测试仪评估了包覆和未包覆样品的耐磨性能,包覆样品的磨损量比未包覆的小8倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号