首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A procedure for classifying proteins of known sequence into structurally similar groups was developed on the basis of the Argos parametric approach. It is shown that stefins and cystatins constitute two structurally well resolved, but homologous groups of proteins. Furthermore, it is very probable that segments of secondary structures within each family are conserved, although significant differences between stefins and cystatins are indicated at the level of secondary structure. Next, secondary structures of all sequenced stefins and cystatins were predicted and used in the construction of secondary structures of the "typical stefin" and the "typical cystatin". Results were interpreted in the light of evolution and inhibition mechanism: Alignment of the "typical stefin" versus the "typical cystatin" secondary structure segments suggests that the divergence of stefin and cystatin families did not occur by a gene fusion event, but only by a mechanism of substitution, insertion and/or deletion. The central region of low-molecular mass cystatins, which is assumed to interact with cysteine proteinases, is predicted to be in a beta-sheet conformation. This resembles the beta-sheet in the active site of "standard mechanism" serine proteinases inhibitors.  相似文献   

2.
The cystatin superfamily is comprised of cysteine proteinase inhibitors and encompasses at least 3 subfamilies: stefins, cystatins and kininogens. In this study, the platyhelminth cystatin superfamily was identified and grouped into stefin and cystatin subfamilies. The conserved domain of stefins (G, QxVxG) was observed in all members of platyhelminth stefins. The three characteristics of cystatins, the cystatin-like domain (G, QxVxG, PW), a signal peptide, and one or two conserved disulfide bonds, were observed in platyhelminths, with the exception of cestodes, which lacked the conserved disulfide bond. However, it is noteworthy that cestode cystatins had two tandem repeated domains, although the second tandem repeated domain did not contain a cystatin-like domain, which has not been previously reported. Tertiary structure analysis of Taenia solium cystatin, one of the cestode cystatins, demonstrated that the N-terminus of T. solium cystatin formed a five turn α-helix, a five stranded β-pleated sheet and a hydrophobic edge, similar to the structure of chicken cystatin. Although no conserved disulfide bond was found in T. solium cystatin, the models of T. solium cystatin and chicken cystatin corresponded at the site of the first disulfide bridge of the chicken cystatin. However, the two models were not similar regarding the location of the second disulfide bridge of chicken cystatin. These results showed that T. solium cystatin and chicken cystatin had similarities and differences, suggesting that the biochemistry of T. solium cystatin could be similar to chicken cystatin in its inhibitory function and that it may have further functional roles. The same results were obtained for other cestode cystatins. Phylogenetic analysis showed that cestode cystatins constituted an independent clade and implied that cestode cystatins should be considered to have formed a new clade during evolution.  相似文献   

3.
H Kondo  K Abe  Y Emori  S Arai 《FEBS letters》1991,278(1):87-90
The gene structure of oryzacystatin-II, a new cystatin superfamily member of rice seed origin, was determined. It spans approximately 2.5 kbp and comprises 3 exons. The number of exons and the intron-breakpoints coincide with those of oryzacystatin-I, the first well-defined plant cystatin. However, no similar sequences were observed between the two oryzacystatin genes in 5'-upstream regulatory regions, even though both are expressed specifically during the ripening stage of rice seeds. The gene organization of these two plant cystatins is generally different from that of animal cystatins.  相似文献   

4.
Cystatins are natural inhibitors of papain-like (family C1) and legumain-related (family C13) cysteine peptidases. Cystatin D is a type 2 cystatin, a secreted inhibitor found in human saliva and tear fluid. Compared with its homologues, cystatin D presents an unusual inhibition profile with a preferential inhibition cathepsin S > cathepsin H > cathepsin L and no inhibition of cathepsin B or pig legumain. To elucidate the structural reasons for this specificity, we have crystallized recombinant human Arg(26)-cystatin D and solved its structures at room temperature and at cryo conditions to 2.5- and 1.8-A resolution, respectively. Human cystatin D presents the typical cystatin fold, with a five-stranded anti-parallel beta-sheet wrapped around a five-turn alpha-helix. The structures reveal differences in the peptidase-interacting regions when compared with other cystatins, providing plausible explanations for the restricted inhibitory specificity of cystatin D for some papain-like peptidases and its lack of reactivity toward legumain-related enzymes.  相似文献   

5.
The cystatins: protein inhibitors of cysteine proteinases.   总被引:41,自引:0,他引:41  
V Turk  W Bode 《FEBS letters》1991,285(2):213-219
The last decade has witnessed enormous progress of protein inhibitors of cysteine proteinases concerning their structures, functions and evolutionary relationships. Although they differ in their molecular properties and biological distribution, they are structurally related proteins. All three inhibitory families, the stefins, the cystatins and the kininogens, are members of the same superfamily. Recently determined crystal structures of chicken cystatin and human stefin B established a new mechanism of interaction between cysteine proteinases and their inhibitors which is fundamentally different from the standard mechanism for serine proteinases and their inhibitors.  相似文献   

6.
Cystatins, together with stefins and kininogens, are members of the cystatin superfamily of cysteine protease inhibitors (CPI) present across the animal and plant kingdoms. Their role in parasitic organisms may encompass both essential developmental processes and specific interactions with the parasite's vector and/or final host. We summarise information gathered on three cystatins from the human filarial nematode Brugia malayi (Bm-CPI-1, -2 and -3), and contrast them those expressed by other parasites and by the free-living nematode Caenorhabditis elegans. Bm-CPI-2 differs from C. elegans cystatin, having acquired the additional function of inhibiting asparaginyl endopeptidase (AEP), in a manner similar to some human cystatins. Thus, we propose that Bm-CPI-2 and orthologues from related filarial parasites represent a new subset of nematode cystatins. Bm-CPI-1 and CPI-3 share only 25% amino acid identity with Bm-CPI-2, and lack an evolutionarily conserved glycine residue in the N-terminal region. These sequences group distantly from the other nematode cystatins, and represent a second novel subset of filarial cystatin-like genes. Expression analyses also show important differences between the CPI-2 and CPI-1/-3 groups. Bm-cpi-2 is expressed at all time points of the parasite life cycle, while Bm-cpi-1 and -3 expression is confined to the late stages of development in the mosquito vector, terminating within 48h of infection of the mammalian host. Hence, we hypothesise that CPI-2 has evolved to block mammalian proteases (including the antigen-processing enzyme AEP) while CPI-1 and -3 function in the milieu of the mosquito vector necessary for transmission of the parasite.  相似文献   

7.
Papaya proteinase IV (PPIV) is not inhibited by chicken cystatin, or human cystatins A or C, unlike most other proteinases of the papain superfamily. The enzyme inactivates chicken cystatin and human cystatin C by limited proteolysis of the glycyl bond previously shown to be involved in the inhibitory inactivity of the cystatins, but has no action on cystatin A. Contamination of commercial crystalline papain with PPIV accounts for the limited proteolysis of cystatins by 'papain' reported previously. PPIV is slowly bound by human alpha 2-macroglobulin. The enzyme is irreversibly inactivated by E-64, and by peptidyl diazomethanes containing glycine in P1 and a hydrophobic side-chain in P2. The reaction of PPIV with iodoacetate is extremely slow. PPIV is inhibited by peptide aldehydes despite the presence of bulky sidechains in P1, suggesting that these reversible inhibitors do not bind as substrate analogues.  相似文献   

8.
Oryzacystatin (oryzacystatin-I) is a proteinaceous cysteine proteinase inhibitor (cystatin) in rice seeds and is the first well defined cystatin of plant origin. In this study we isolated cDNA clones for a new type of cystatin (oryzacystatin-II) in rice seeds by screening with the oryzacystatin-I cDNA probe. The newly isolated cDNA clone encodes 107 amino acid residues whose sequence is similar to that of oryzacystatin-I (approximately 55% of identity). These oryzacystatins have no disulfide bonds, and so could be classified as family-I cystatins; however, the amino acid sequences resemble those of family-II members more than family-I members. Oryzacystatin-I and -II are remarkably distinct in two respects: 1) their specificities against cysteine proteinases; and 2) the expression patterns of their mRNAs in the ripening stage of rice seeds. Oryzacystatin-I inhibits papain more effectively (Ki 3.0 x 10(-8) M) than cathepsin H (Ki 0.79 x 10(-6) M), while oryzacystatin-II inhibits cathepsin H (Ki 1.0 x 10(-8) M) better than papain (Ki 0.83 x 10(-6) M). The mRNA for oryzacystatin-I is expressed maximally at 2 weeks after flowering and is not detected in mature seeds, whereas the mRNA for oryzacystatin-II is constantly expressed throughout the maturation stages and is clearly detected in mature seeds. Western blotting analysis using antibody to oryzacystatin-II showed that, as is the case with oryzacystatin-I, oryzacystatin-II occurs in mature rice seeds. Thus, these two oryzacystatin species are believed to be involved in the regulation of proteolysis caused by different proteinases.  相似文献   

9.
When an excess of human cystatin C or chicken cystatin was mixed with papain, an enzyme-inhibitor complex was formed immediately. The residual free cystatin was then progressively converted to a form with different electrophoretic mobility and chromatographic properties. The modified cystatins were isolated and sequenced, showing that there had been cleavage of a single peptide bond in each molecule: Gly11-Gly12 in cystatin C, and Gly9-Ala10 in chicken cystatin. The residues Gly11 (cystatin C) and Gly9 (chicken cystatin) are among only three residues conserved in all known sequences of inhibitory cystatins. The modified cystatins were at least 1000-fold weaker inhibitors of papain than the native cystatins. An 18-residue synthetic peptide corresponding to residues 4-21 of cystatin C did not inhibit papain but was cleaved at the same Gly-Gly bond as cystatin C. When iodoacetate or L-3-carboxy-trans-2,3-epoxypropionyl-leucylamido-(4-guanidin o)butane was added to the mixtures of either cystatin with papain, modification of the excess cystatin was blocked. Papain-cystatin complexes were stable to prolonged incubation, even in the presence of excess papain. We conclude that the peptidyl bond of the conserved glycine residue in human cystatin C and chicken cystatin probably is part of a substrate-like inhibitory reactive site of these cysteine proteinase inhibitors of the cystatin superfamily and that this may be true also for other inhibitors of this superfamily. We also propose that human cystatin C and chicken cystatin, and probably other cystatins as well, inhibit cysteine proteinases by the simultaneous interactions with such proteinases of the inhibitory reactive sites and other, so far not identified, areas of the cystatins. The cleavage of the inhibitory reactive site glycyl bond in mixtures of papain with excess quantities of cystatins is apparently due to the activity of a small percentage of atypical cysteine proteinase molecules in the papain preparation that form only very loose complexes with cystatins under the conditions employed and degrade the free cystatin molecules.  相似文献   

10.
By using ThT fluorescence, X-ray diffraction, and atomic force microscopy (AFM), it has been shown that human stefins A and B (subfamily A of cystatins) form amyloid fibrils. Both protein fibrils show the 4.7 A and 10 A reflections characteristic for cross beta-structure. Similar height of approximately 3 nm and longitudinal repeat of 25-27 nm were observed by AFM for both protein fibrils. Fibrils with a double height of 5.6 nm were only observed with stefin A. The fibril's width for stefin A fibrils, as observed by transmission electron microscopy (TEM), was in the same range as previously reported for stefin B (Zerovnik et al., Biochem Biophys Acta 2002;1594:1-5). The conditions needed to undergo fibrillation differ, though. The amyloid fibrils start to form at pH 5 for stefin B, whereas in stefin A, preheated sample has to be acidified to pH < 2.5. In both cases, adding TFE, seeding, and alignment in a strong magnetic field accelerate the fibril growth. Visual analysis of the three-dimensional structures of monomers and domain-swapped dimers suggests that major differences in stability of both homologues stem from arrangement of specific salt bridges, which fix alpha-helix (and the alpha-loop) to beta-sheet in stefin A monomeric and dimeric forms.  相似文献   

11.
Recently opposing effects of cysteine protease inhibitors, the human cystatins, on neurodegeneration have been reported. Human cystatin C is a risk factor for late‐onset Alzheimer's disease (AD), whereas human stefin B (cystatin B) has no direct involvement in AD. Conflicting data show that their target protease, cathepsin B, might be anti‐amyloidogenic, helping in amyloid‐beta (Aβ) clearance or, instead, might be involved in Aβ production. Some reports claim that cystatin C binds soluble Aβ, making transgenic animals healthier, others, in contrast, that deleting cystatins genes may contribute to amyloid pathology in animal models of AD.  相似文献   

12.
Within the cystatin superfamily, only kininogen domain 2 (KD2) is able to inhibit mu- and m-calpain. In an attempt to elucidate the structural requirements of cystatins for calpain inhibition, we constructed recombinant hybrids of human stefin B (an intracellular family 1 cystatin) with KD2 and deltaL110 deletion mutants of chicken cystatin-KD2 hybrids. Substitution of the N-terminal contact region of stefin B by the corresponding KD2 sequence resulted in a calpain inhibitor of Ki = 188 nM. Deletion of L110, which forms a beta-bulge in family 1 and 2 cystatins but is lacking in KD2, improved inhibition of mu-calpain 4- to 8-fold. All engineered cystatins were temporary inhibitors of calpain due to slow substrate-like cleavage of a single peptide bond corresponding to Gly9-Ala10 in chicken cystatin. Biomolecular interaction analysis revealed that, unlike calpastatin, the cystatin-type inhibitors do not bind to the calmodulin-like domain of the small subunit of calpain, and their interaction with the mu-calpain heterodimer is completely prevented by a synthetic peptide comprising subdomain B of calpastatin domain 1. Based on these results we propose that (i) cystatin-type calpain inhibitors interact with the active site of the catalytic domain of calpain in a similar cystatin-like mode as with papain and (ii) the potential for calpain inhibition is due to specific subsites within the papain-binding regions of the general cystatin fold.  相似文献   

13.
We have investigated the inhibition of the recently identified family C13 cysteine peptidase, pig legumain, by human cystatin C. The cystatin was seen to inhibit enzyme activity by stoichiometric 1:1 binding in competition with substrate. The Ki value for the interaction was 0.20 nM, i.e. cystatin C had an affinity for legumain similar to that for the papain-like family C1 cysteine peptidase, cathepsin B. However, cystatin C variants with alterations in the N-terminal region and the "second hairpin loop" that rendered the cystatin inactive against cathepsin B, still inhibited legumain with Ki values 0.2-0.3 nM. Complexes between cystatin C and papain inhibited legumain activity against benzoyl-Asn-NHPhNO2 as efficiently as did cystatin C alone. Conversely, cystatin C inhibited papain activity against benzoyl-Arg-NHPhNO2 whether or not the cystatin had been incubated with legumain, strongly indicating that the cystatin inhibited the two enzymes with non-overlapping sites. A ternary complex between legumain, cystatin C, and papain was demonstrated by gel filtration supported by immunoblotting. Screening of a panel of cystatin superfamily members showed that type 1 inhibitors (cystatins A and B) and low Mr kininogen (type 3) did not inhibit pig legumain. Of human type 2 cystatins, cystatin D was non-inhibitory, whereas cystatin E/M and cystatin F displayed strong (Ki 0.0016 nM) and relatively weak (Ki 10 nM) affinity for legumain, respectively. Sequence alignments and molecular modeling led to the suggestion that a loop located on the opposite side to the papain-binding surface, between the alpha-helix and the first strand of the main beta-pleated sheet of the cystatin structure, could be involved in legumain binding. This was corroborated by analysis of a cystatin C variant with substitution of the Asn39 residue in this loop (N39K-cystatin C); this variant showed a slight reduction in affinity for cathepsin B (Ki 1.5 nM) but >5,000-fold lower affinity for legumain (Ki >1,000 nM) than wild-type cystatin C.  相似文献   

14.
Of seven human cystatins investigated, none inhibited the cysteine proteases staphopain A and B secreted by the human pathogen Staphylococcus aureus. Rather, the extracellular cystatins C, D and E/M were hydrolyzed by both staphopains. Based on MALDI-TOF time-course experiments, staphopain A cleavage of cystatin C and D should be physiologically relevant and occur upon S. aureus infection. Staphopain A hydrolyzed the Gly11 bond of cystatin C and the Ala10 bond of cystatin D with similar Km values of approximately 33 and 32 microM, respectively. Such N-terminal truncation of cystatin C caused >300-fold lower inhibition of papain, cathepsin B, L and K, whereas the cathepsin H activity was compromised by a factor of ca. 10. Similarly, truncation of cystatin D caused alleviated inhibition of all endogenous target enzymes investigated. The normal activity of the cystatins is thus down-regulated, indicating that the bacterial enzymes can cause disturbance of the host protease-inhibitor balance. To illustrate the in vivo consequences, a mixed cystatin C assay showed release of cathepsin B activity in the presence of staphopain A. Results presented for the specificity of staphopains when interacting with cystatins as natural protein substrates could aid in the development of therapeutic agents directed toward these proteolytic virulence factors.  相似文献   

15.
In mammals, numerous precursors of antibacterial peptides with unrelated sequences share a similar prosequence of 94-114 residues, termed the cathelin-like domain. The cathelin-like domain of protegrin-3 (ProS) was overexpressed in Escherichia coli and uniformly labeled with (15)N or (15)N and (13)C, and its three-dimensional structure was determined by heteronuclear NMR at pH 6.2. Under these conditions and due to the cis-trans isomerization of the R(87)-P(88) and D(118)-P(119) amide bonds, the ProS structure was found to adopt four almost equally populated conformations in slow exchange on the NMR chemical shift time scale. The ProS structure consists of an N-terminal alpha-helix (Y(34)-N(48)) cradled by a four-stranded antiparallel beta-sheet (beta1, N(53)-L(60); beta2, K(74)-P(86); beta3, V(104)-V(111); and beta4, I(122)-C(124)). The solution structure of ProS, which is monomeric, allowed us to determine the structure of the L1 and L2 loops, which are too mobile in the crystal structure. The regions common to the solution and X-ray structures were found to be very similar. Finally, since the overall fold of ProS is very similar to that of cystatins despite a low degree of sequence identity, the ProS solution structure was compared to the solution and X-ray structures of the chicken cystatin. This comparison revealed that the structures of the L1 and L2 loops as well as that of the appending domain are quite different in the two proteins. These differences are mainly due to the high proline residue content (10%) which disorganizes the hydrogen bond network of a part of the ProS beta-sheet in contrast to that of the chicken cystatin structure.  相似文献   

16.
Cancer metastasis involves multiple factors, one of which is the production and secretion of matrix degrading proteases by the cancer cells. Many metastasizing cancer cells secrete the lysosomal proteases, cathepsins L and B, which implicates them in the metastatic process. Cathepsins L and B are regulated by endogenous cysteine proteinase inhibitors (CPI) known as cystatins. An imbalance between cathepsin L and/or B and cystatin expression/activity may be a characteristic of the metastatic phenotype. To determine whether cystatins can attenuate the invasive ability of PC3 prostate cancer cells, cells were transfected with a cDNA coding for chicken cystatin. Expression of chicken cystatin mRNA was determined by PCR analysis. Total cysteine proteinase inhibitory activity, cathepsins L+B activity, and invasion through a Matrigel® matrix were assessed. Stably transfected cells expressed the chicken cystatin mRNA and exhibited a significant decrease in secreted cathepsin L+B activity and a small increase in secreted cysteine proteinase inhibitor activity. The ability of cystatin transfected cells to invade the reconstituted basement membrane, Matrigel®, was attenuated compared to nontransfected cells or cells transfected with vector alone. We have demonstrated that the cysteine proteinases cathepsins L and B participate in the invasive ability of the PC3 prostate cancer cell line, and we discuss here the potential of using cysteine proteinase inhibitors such as the cystatins as anti-metastatic agents.  相似文献   

17.
Cancer metastasis involves multiple factors, one of which is the production and secretion of matrix degrading proteases by the cancer cells. Many metastasizing cancer cells secrete the lysosomal proteases, cathepsins L and B, which implicates them in the metastatic process. Cathepsins L and B are regulated by endogenous cysteine proteinase inhibitors (CPI) known as cystatins. An imbalance between cathepsin L and/or B and cystatin expression/activity may be a characteristic of the metastatic phenotype. To determine whether cystatins can attenuate the invasive ability of PC3 prostate cancer cells, cells were transfected with a cDNA coding for chicken cystatin. Expression of chicken cystatin mRNA was determined by PCR analysis. Total cysteine proteinase inhibitory activity, cathepsins L+B activity, and invasion through a Matrigel® matrix were assessed. Stably transfected cells expressed the chicken cystatin mRNA and exhibited a significant decrease in secreted cathepsin L+B activity and a small increase in secreted cysteine proteinase inhibitor activity. The ability of cystatin transfected cells to invade the reconstituted basement membrane, Matrigel®, was attenuated compared to nontransfected cells or cells transfected with vector alone. We have demonstrated that the cysteine proteinases cathepsins L and B participate in the invasive ability of the PC3 prostate cancer cell line, and we discuss here the potential of using cysteine proteinase inhibitors such as the cystatins as anti-metastatic agents.  相似文献   

18.
Cystatins   总被引:1,自引:0,他引:1  
Chicken egg white cystatin was first described in the late 1960s. Since then, our knowledge about a superfamily of similar proteins present in mammals, birds, fish, insects, plants and some protozoa has expanded, and their properties as potent peptidase inhibitors have been firmly established. Today, 12 functional chicken cystatin relatives are known in humans, but a few evolutionarily related gene products still remain to be characterized. The type 1 cystatins (A and B) are mainly intracellular, the type 2 cystatins (C, D, E/M, F, G, S, SN and SA) are extracellular, and the type 3 cystatins (L- and H-kininogens) are intravascular proteins. All true cystatins inhibit cysteine peptidases of the papain (C1) family, and some also inhibit legumain (C13) family enzymes. These peptidases play key roles in physiological processes, such as intracellular protein degradation (cathepsins B, H and L), are pivotal in the remodelling of bone (cathepsin K), and may be important in the control of antigen presentation (cathepsin S, mammalian legumain). Moreover, the activities of such peptidases are increased in pathophysiological conditions, such as cancer metastasis and inflammation. Additionally, such peptidases are essential for several pathogenic parasites and bacteria. Thus cystatins not only have capacity to regulate normal body processes and perhaps cause disease when down-regulated, but may also participate in the defence against microbial infections. In this chapter, we have aimed to summarize our present knowledge about the human cystatins.  相似文献   

19.
Cystatin S: a cysteine proteinase inhibitor of human saliva   总被引:3,自引:0,他引:3  
An acidic protein of human saliva, which we named SAP-1 previously, is now shown to be an inhibitor of several cysteine proteinases. The protein inhibited papain and ficin strongly, and stem bromelain and bovine cathepsin C partially. However, it did not inhibit either porcine cathepsin B or clostripain. The mode of the inhibition of papain was found to be non-competitive. The name cystatin S has been proposed for this salivary protein in view of the similarities in activity and structure to other cysteine proteinase inhibitors such as chicken egg-white cystatin and human cystatins A, B, and C. The cystatin S antigen was detected immunohistochemically in the serous cells of human parotid and submaxillary glands.  相似文献   

20.
Native gamma-trace, a small basic protein present in high concentration in cerebrospinal fluid, semen and neuroendocrine cells, but of unknown biological function, is shown to be a potent inhibitor of the cysteine proteinases papain, ficin, and human cathepsins B, H and L. It proves to be the tightest -binding protein inhibitor of cathepsin B so far discovered. The name cystatin C is proposed for gamma-trace to reflect the many similarities in activity and structure to chicken egg-white cystatin and mammalian cystatins A and B. The inhibition constants of cystatin C, taken together with its widespread distribution in human tissues and extracellular fluids, suggest that a physiological function could well be the regulation of cysteine proteinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号