首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 3000 cc diesel engine attached to an engine dynamo was used to test three newly developed electrostatic Diesel Particulate matter filtration Systems (DPS 1, 2, and 3) under four steady-state engine operating conditions: idle, 2000 rpm with no load, and 2000 rpm under 25% and 50% loads. Of the two developed alternatives, DPS 1 and DPS 2, DPS 2 comprises an ionization section, electrostatic field additional section and Flow-Through Filter (FTF), which achieved almost 90% removal of particulate matter (PM) under the engine’s operating conditions, and the efficiency of the FTF was maintained between 20% and 50%. Comparing the long-term performance of DPS 2 and DPS 3 (effectively a serial combination of two DPS 2s) with a commercially-available Diesel Particulate Filter (DPF), the DPS 2 and DPS 3 achieved almost the same efficiency for removing PM as the DPF but had significantly improved (75%∼90% lower) differential pressure drops.  相似文献   

2.
The goal of this paper is to determine how the geometry of the vehicle’s frontal profile is influencing the pedestrian’s head accelerations (linear and angular) in car-to-pedestrian accidents. In order to achieve this goal, a virtual multibody dummy of the pedestrian was developed and multiple simulations of accidents were performed using vehicles with different frontal profile geometry, from different classes. The type of accidents considered is characteristic for urban areas and occur at relatively low speed (around 30 km/h) when an adult pedestrian is struck from the rear and the head acceleration variation are the measurement of the accident severity. In the accident simulation 3D meshes were applied on the geometry of the vehicles, in order to define the contact surface with the virtual dummy, similar with real vehicles. The validation of the virtual pedestrian dummy was made by performing two crash-tests with a real dummy, using the same conditions as in the simulations. The measured accelerations in the tests were the linear and angular accelerations of the head during the impact, and these were compared with the ones from the simulations. After validating the virtual model of the car-to-pedestrian accident, we were able to perform multiple simulations with different vehicle shapes. These simulations are revealing how the geometric parameters of the vehicle’s frontal profile are influencing the head acceleration. This paper highlights the main geometric parameters of the frontal profile design that influence the head injury severity and the way that the vehicles can be improved by modifying these parameters. The paper presents an approach to determine the “friendliness” of the vehicle’s frontal profile in the car-to-pedestrian collision.  相似文献   

3.
A perturbation mark is occasionally produced on the velocity indicator of the cluster panel of a vehicle during a vehicle collision. This mark can be used to estimate the velocity of the vehicle at the moment of the vehicle’s impact. In this study, the effect of the impact velocity and the deceleration of the vehicle on the perturbation mark were investigated, and an analysis of the driver’s injury was also conducted through a numerical pulse representation and computer simulations. Sled and pendulum tests were used to replicate the conditions that produce a perturbation mark on the velocity indicator of a cluster panel. It was verified that a higher peak acceleration is more likely than the impact velocity to cause a perturbation mark. According to the computer simulation results, a driver’s injury could be more severe at higher peak accelerations with a constant impact velocity. If a perturbation mark, which can be used to estimate the impact velocity, is found while investigating a vehicle accident, this mark reveals that the acceleration was higher than that listed in the related crash report. Therefore, the injuries of the occupants could be more serious than those expected at the reported impact velocity.  相似文献   

4.
Head injuries are a major cause of fatalities in pedestrian-car accidents. The HIC (Head Injury Criterion) value, a measure of the fatality risk of a head injury, is calculated from the acceleration of the head’s center of gravity (henceforth, head center) resulting from a head impact. The pedestrian’s head does not impact the hood at a direction normal to the hood’s surface. The direction of motion of the head center may change extremely rapidly upon impact, and normal acceleration may also significantly contribute to the resultant acceleration of the head center. Therefore, pedestrian head protection studies should consider how normal acceleration contributes to the resultant acceleration of the head center. It is necessary to control the resultant acceleration of the head center to produce an optimal characteristic pulse. This study analyzes the composition and variations of the head’s acceleration in head-to-hood impacts, focusing on exactly how the normal and tangential components of the acceleration contribute to the resultant acceleration of the head center. This study also considers how structural design parameters affect each component of the resultant acceleration. Methods to control the resultant acceleration of the head center to produce an optimal characteristic pulse can be proposed based on the results of this study. The analytical models and the results of this study contribute to efforts to design vehicle hoods and pave the way for developing pedestrian protection technologies.  相似文献   

5.
This study proposes a design for an idle speed controller to compensate for varying engine load and friction torque in passenger car diesel engines. An active disturbance rejection control (ADRC) framework, comprised of a disturbance compensator and a feedback controller, is applied to an idle speed controller to compensate for disturbances such as engine load and friction torque. In addition, a feedforward compensator is designed into the ADRC framework to improve disturbance rejection performance. The proposed controller is validated by engine and vehicle experiments and the experiment results are compared with a commercial controller.  相似文献   

6.
Parallel sequential turbocharging systems are able to operate in different modes, which are defined according to the turbochargers that simultaneously boost the engine, and are controlled by means of specific valves. In order to cover the full engine operating range, a smooth transition between turbocharging operating modes must be ensured. However, important disturbances affect both boost and exhaust pressure when shifting the operation mode, thus causing non-negligible torque oscillations. This paper presents different methods for smoothing such undesirable effects during mode transition. Strategies covering optimal synchronization of the control valves, control of the valves’ position, and correction of the injected fuel during the transition are analysed. A fully instrumented passenger car engine is used for illustrating the different torque smoothing methods, and experimental results for transitions during both steady operation and engine accelerations are shown.  相似文献   

7.
汽油机采用VVA可改善怠速稳定性,提高中低速外特性扭矩,往往也有一定的节油效果。但VVA机构研制难度很大,目前只有个别机构实用。作者研制了一个采用双级谐波传动的调相机构。试验表明,该机构能圆满实现调相功能,其长期工作的可靠性也经受了一定考验,考察了调相对发动机充量系数的影响,计算和实测结果基本一致,在全部转速范围内,充量系数都有提高。  相似文献   

8.
Low viscosity engine oil can improve a vehicle’s fuel economy by decreasing the friction between the engine components. Frictional torque varies with the velocity change due to different viscosity characteristics of SAE grade 5W-20, 5W-30 and 5W-40 engine oils. The viscosity for each of these grades was measured to outline the effect low viscosity engine oils have on engine friction, which may lead to improved fuel economy. Engine oil seal frictional torque increases with the shaft rotational speed for all three engine oil grades. A decrease in engine oil seal frictional torque was confirmed when low viscosity engine oil was used. Also, the leak-free performance of the engine oil with the seal satisfied the life limit durability test criteria. Thus, low viscosity engine oil may be used to improve fuel economy by decreasing the frictional loss of the engine oil seal while having no negative impact on performance due to leak-free functioning.  相似文献   

9.
轿车发动机怠速工况CO排放统计特征   总被引:1,自引:0,他引:1  
基于大量在用轿车发动机怠速工况CO排放实测数据 ,对其CO排放进行统计分析 ,得出其最优拟合分布和相应的分布参数 ,同时建立怠速工况CO排放分布密度函数和分布函数统计模型。本研究对计算轿车发动机怠速CO排放数值 ,正确评价其对城市周围大气环境所造成的污染以及排放法规的修订必将起到重要的作用  相似文献   

10.
Torque is one of the most important control factors for a vehicle’s motion. Compared with internal combustion engines, electric motors can have a more accurate torque feedback which brings a lot of advantages to vehicle dynamics and stability control. However, motors used in electric vehicles are facing more difficult conditions than those in conventional applications, such as extreme high/low temperature changing, vibration, aging, etc. The variation of motor parameters due to harsh working conditions can lead to serious problems for motor torque estimation and thus dynamic control of electric vehicles. In this paper, a new method using kriging to estimate the back EMF and thus accurately calculate motor torque in an on-line fashion is presented. With motor speed and rotor position as inputs, kriging predicts back EMF as the output that is used to calculate the motor torque with three phase currents. Using this novel method, motor torque can be accurately calculated even facing high/low temperatures or aging conditions. Experimental tests under the high temperature have been conducted to verify the applicability of the proposed method.  相似文献   

11.
利用整车有限元模型计算出发动机曲轴转矩到驾驶员座椅和转向盘的加速度的传递函数,同时通过试验测量出发动机怠速时的输出转矩,因此,利用A/T模型可在汽车开发的前期较好地预测并控制整车怠速振动.最后以分析实例和试验验证了该方法在整车性能设计中的适用性和准确性.  相似文献   

12.
An efficient procedure for minimizing the engine-induced harshness based on NVH analysis results of a full vehicle model was developed in this study, taking stiffness and strength constraints into account. Although extensive research may be found in the literature in the field of engine support system optimization, no other studies have considered the compliances and resonances of the structure of the vehicle. In the present paper, NVH analysis results of the whole vehicle were used in an optimization procedure to suppress the transmitted vibration. A procedure was developed to minimize the transmitted accelerations to the mid-point of the driver’s seat rail. A DOE-based response surface methodology (RSM) was adopted to determine the optimal solution. Natural frequencies of the body, suspension, and other subsystems were taken into consideration in determining the optimal solution. NVH analysis was performed for two types of inputs: (a) vertical vibration due to vertical unbalanced forces and (b) torsional vibration due to oscillations in the output torque of the engine.  相似文献   

13.
车用柴油机的二级增压   总被引:6,自引:0,他引:6  
阐述了重型车用柴油机及轿车柴油机上采用的二级可变增压系统原理。试验表明,在柴油机上应用二级增压能有效提高升功率、增大低速扭矩、改善加速性、改善低速油耗及排放。指出,二级增压系统存在着较为复杂的系统构成、体积和质量都较大及有关控制难以实现等问题,并探讨了其解决方案。  相似文献   

14.
大客车大部分采用后置发动机,驾驶区保温性能比较差。高寒地区大客车驾驶区采暖性能的好坏直接影响到驾驶员的舒适性和行车的安全性。本文根据市场上大客车驾驶区采暖存在的问题,进行简要分析并提出解决措施。  相似文献   

15.
Independent control of all-wheel-drive torque distribution   总被引:1,自引:0,他引:1  
The sophistication of all-wheel-drive (AWD) technology is approaching the point where the drive torque to each wheel can be independently controlled. This potentially offers vehicle handling enhancements similar to those provided by dynamic stability control, but without the inevitable reduction in vehicle acceleration. Independent control of AWD torque distribution would therefore be especially beneficial under acceleration close to the limit of stability. A vehicle model of a typical sports sedan was developed in Simulink, with fully independent control of torque distribution. Box-Behnken experimental design was employed to determine which torque distribution parameters have the greatest impact on the vehicle course and acceleration. A proportional-integral control strategy was implemented, applying yaw rate feedback to vary the front-rear torque distribution and lateral acceleration feedback to adjust the left-right distribution. The resulting system shows a significant improvement over conventional driveline configurations under aggressive cornering acceleration on a high-μ surface. The performance approaches the theoretical limit for these conditions. In the medium term, such a system is only likely to be economically viable for premium vehicles. However, a future revolution of powertrain technology towards, for example, wheel-mounted motors, could realize these handling benefits far more widely.  相似文献   

16.
A new device for an objective evaluation of ground vehicle ride comfort is presented. In this study, the ride comfort (frequency range 0–30 Hz) has been referred to the acceleration acting along the vertical axis (subject spine) and to the longitudinal acceleration (acting at the subject shoulders). Based on the experimental measurements of such accelerations on different human subjects seated on a car seat, a proper mechanical/mathematical model of the seat+subject has been derived. The derivation of the model has been performed by minimising the error between the measured and the computed accelerations. A prototype of the derived mechanical model has been actually built. Particular attention has been devoted to the construction of the springs, of the moving members and of the magnetic damper. All of the device parameters (mass, stiffness, damping) can be easily tuned. Finally, an experimental validation of the device has been performed. The device, while seated with the same posture of the corresponding human subject is able to reproduce (with reasonable accuracy) both the acceleration along the subject spine and the acceleration at the subject shoulders.  相似文献   

17.
进行了摩擦片式防滑差速器防滑转矩输出特性测定试验,并分别对装有摩擦片式防滑差速器和普通差速器的汽车,通过试验测定的车厢侧倾角、转弯半径比、前后轴侧偏角差值、横摆角速度及侧向加速度作为对比参数,研究了摩擦片式防滑差速器转矩特性对汽车操纵稳定性的影响。结果表明,摩擦片式防滑差速器能够显著提高汽车的动力性、通过性,改善汽车的操纵稳定性。  相似文献   

18.
The sophistication of all-wheel-drive (AWD) technology is approaching the point where the drive torque to each wheel can be independently controlled. This potentially offers vehicle handling enhancements similar to those provided by dynamic stability control, but without the inevitable reduction in vehicle acceleration. Independent control of AWD torque distribution would therefore be especially beneficial under acceleration close to the limit of stability. A vehicle model of a typical sports sedan was developed in Simulink, with fully independent control of torque distribution. Box–Behnken experimental design was employed to determine which torque distribution parameters have the greatest impact on the vehicle course and acceleration. A proportional-integral control strategy was implemented, applying yaw rate feedback to vary the front–rear torque distribution and lateral acceleration feedback to adjust the left–right distribution. The resulting system shows a significant improvement over conventional driveline configurations under aggressive cornering acceleration on a high-μ surface. The performance approaches the theoretical limit for these conditions. In the medium term, such a system is only likely to be economically viable for premium vehicles. However, a future revolution of powertrain technology towards, for example, wheel-mounted motors, could realize these handling benefits far more widely.  相似文献   

19.
Drowsy behavior is more likely to occur in sleep-deprived drivers. Individuals’ drowsy behavior detection technology should be developed to prevent drowsiness related crashes. Driving information such as acceleration, steering angle and velocity, and physiological signals of drivers such as electroencephalogram (EEG), and eye tracking are adopted in present drowsy behavior detection technologies. However, it is difficult to measure physiological signal, and eye tracking requires complex experiment equipment. As a result, driving information is adopted for drowsy driving detection. In order to achieve this purpose, driving experiment is performed for obtaining driving information through driving simulator. Moreover, this paper investigates effects of using different input parameter combinations, which is consisted of lateral acceleration, longitudinal acceleration, and steering angles with different time window sizes (i.e. 4 s, 10 s, 20 s, 30 s, 60 s), on drowsy driving detection using random forest algorithm. 20 s-size datasets using parameter combination of accelerations in lateral and longitudinal directions, compared to the other combination cases of driving information such as steering angles combined with lateral and longitudinal acceleration, steering angles only, longitudinal acceleration only, and lateral acceleration only, is considered the most effective information for drivers’ drowsy behavior detection. Moreover, comparing to ANN algorithm, RF algorithm performs better on processing complex input data for drowsy behavior detection. The results, which reveal high accuracy 84.8 % on drowsy driving behavior detection, can be applied on condition of operating real vehicles.  相似文献   

20.
转向力是汽车操纵稳定性中一项重要的评价指标,其力矩波动直接影响驾驶感觉。文章对汽车转向轴的布置与力矩波动的关系进行了分析,并针对某车型转向系统的十字轴万向节结构进行优化设计。优化结果在matlab软件里仿真,得到较好的结果,波动力矩在允许的范围内。并得出最佳的中间轴相位角及轴系布置方案,对转向系统的优化设计有一定的参考价值,可作为实际车型开发中传动优化设计的技术依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号