首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Baskaran V  Sugawara T  Nagao A 《Lipids》2003,38(7):705-711
Previously, we have shown that uptake of carotenoids solubilized with mixed micelles by human intestinal Caco-2 cells is enhanced by lysophosphatidylcholine (lysoPC) and suppressed by PC. This study determined the effect of PC and lysoPC in mixed micelles on the accumulation of β-carotene and lutein in mice in order to elucidate the roles of micellar phospholipid in the intestinal uptake of carotenoids in vivo. Mixed micelles were composed of 2.5 mM monooleoylglycerol, 7.5 mM oleic acid, 12 mM sodium taurocholate, 200 μM carotenoid, and 3 mM phospholipid in PBS. The mice were fed single doses of β-carotene or lutein solubilized in PC (PC group), lysoPC (LPC group), and no phospholipid (NoPL group) micelles. The β-carotene responses in the plasma and liver of the PC group were markedly lower than those of the other two groups, whereas no differences were noticed between the LPC and NoPL groups. The average level of lutein in the plasma of the PC group after administration was significantly (P<0.05) lower than those of the other groups. Moreover, the average level of lutein in the liver was significantly (P<0.05) different among the groups in the order of LPC>NoPL>PC. Thus, the results clearly indicate that PC suppressed the accumulation of β-carotene and lutein in plasma and liver and that lysoPC enhanced the accumulation of lutein in liver. These results suggest that the hydrolysis of PC to lysoPC plays an important role in the intestinal uptake of carotenoids solubilized in mixed micelles.  相似文献   

2.
We have been investigating the factors determining the bioavailability of carotenoids from vegetables. The previous paper [Rich, G.T., Bailey, A.L., Faulks, R.M., Parker, M.L., Wickham, M.S.J., and Fillery-Travis, A. (2003) Solubilization of Carotenoids from Carrot Juice and Spinach in Lipid Phases: I. Modeling the Gastric Lumen, Lipids 38, 933–945] modeled the gastric lumen and studied the solubilization pathway of carotenes and lutein from carrot juice and homogenized spinach to oil. Using the same vegetable preparations, we have extended our investigations to solubilization pathways potentially available in the duodenum and looked at the ease of solubilization of carotenes and lutein within simplified lipid micellar and oil phases present within the duodenum during digestion. Micellar solubility of raw spinach carotenoids was low and was enhanced by freezing, which involved a blanching step. The efficiency of solubilization of carotenoids in glycodeoxycholate micelles decreased in the order luteincarrot>luteinblanched-frozen spinach>caroteneblanched-frozen spinach>carotenecarrot. Frozen spinach carotenoids were less soluble in simple micelles of taurocholate than of glycodeoxycholate. The results comparing the solubility of the carotenoids in mixed micelles (bile salt with lecithin) with simple bile salt micelles are explained by the relative stability of the carotenoid in the organelle compared to that in the micelle. The latter is largely determined by the polarity of the micelle. Below their critical micelle concentration (CMC), bile salts inhibit transfer of carotenoids from tissue to a lipid oil phase. Above their CMC, the bile salts that solubilize a carotenoid can provide an additional route to the oil from the tissue for that carotenoid by virtue of the equilibrium between micellar phases and the interfacial pathway. Mixed micellar phases inhibit transfer of both carotenoids from the tissue to the oil phase, thereby minimizing this futile pathway.  相似文献   

3.
Carotenoids and vitamin E in oils from the market – 6 rapeseed and 6 sunflower oils, half of each cold pressed and refined – and in the oils of rape, sunflower, flax and safflower as well as the respective seeds and press cakes from a local oil mill were quantified by HPLC. Furthermore, a photometric determination of carotenoid content was tested and checked against the chromatographic method. In the cold pressed oils minor amounts of xanthophylls (allE)‐lutein and (allE)‐zeaxanthin were determined. With exception of traces of (allE)‐β‐carotene in cold‐pressed rapeseed oil this provitamin A active compound did not occur. Cold pressed rapeseed oils contained 0.5–1.5 mg total carotenoids/100 g which was manifold the content of the further oils. Vitamin E was found in all vegetable oils at plant‐typic tocopherol patterns. The photometric determination of carotenoids resulted in significantly higher concentrations compared to the HPLC. This overestimation bases on the carotenoid pattern which was validated by comparison with known high‐carotenoid materials, i.e. maize flour with an abundant amount of xanthophylls and carrots with an abundant amount of carotenes.  相似文献   

4.
The kinetics of trans‐β‐carotene and trans‐lutein degradation were individually investigated in palm olein and Vegetaline®, at four temperatures ranging from 120 to 180 °C. HPLC‐DAD analysis was carried out to monitor trans and cis carotenoid variations over the heating time at each temperature. In both oils, initial trans‐β‐carotene and trans‐lutein degradation rates increased with temperature. Trans‐lutein was found to degrade at a slower rate than trans‐β‐carotene, suggesting a higher thermal resistance. The isomers identified were 13‐cis‐ and 9‐cis‐β‐carotene, and 13‐cis‐, 9‐cis‐, 13'‐cis‐, and 9'‐cis‐lutein. In spite of the higher number of lutein cis isomers, their total amount was lower than that of β‐carotene cis isomers. Trans and cis carotenoids were involved in degradation reactions at rates that increased with temperature. All degradation rates were generally found to be lower in Vegetaline® than in palm olein. These results were explained by the initial composition of the two oils and especially their peroxide and vitamin E contents.  相似文献   

5.
Capsicum species produce fruits that synthesize and accumulate carotenoid pigments, which are responsible for the fruits’ yellow, orange and red colors. Chili peppers have been used as an experimental model for studying the biochemical and molecular aspects of carotenoid biosynthesis. Most reports refer to the characterization of carotenoids and content determination in chili pepper fruits from different species, cultivars, varieties or genotypes. The types and levels of carotenoids differ between different chili pepper fruits, and they are also influenced by environmental conditions. Yellow-orange colors of chili pepper fruits are mainly due to the accumulation of α- and β-carotene, zeaxanthin, lutein and β-cryptoxanthin. Carotenoids such as capsanthin, capsorubin and capsanthin-5,6-epoxide confer the red colors. Chromoplasts are the sites of carotenoid pigment synthesis and storage. According to the most accepted theory, the synthesis of carotenoids in chili peppers is controlled by three loci: c1, c2 and y. Several enzymes participating in carotenoid biosynthesis in chili pepper fruits have been isolated and characterized, and the corresponding gene sequences have been reported. However, there is currently limited information on the molecular mechanisms that regulate this biosynthetic pathway. Approaches to gain more knowledge of the regulation of carotenoid biosynthesis are discussed.  相似文献   

6.
Orlistat is a lipase inhibitor that is applied for treating obesity. Lipases are required for digestion and absorption of dietary lipids and fat-soluble vitamins and carotenoids. The aim of this study was to compare the effects of orlistat therapy on plasma concentrations of oxygenated (β-cryptoxanthin, lutein/zeaxanthin) and hydrocarbon (α-, β-carotene, lycopene) carotenoids. Six patients with a body mass index (BMI)≥30 kg/m2 received 360 mg/d orlistat over 4.5 mon. Plasma carotenoid concentrations were determined at baseline (T 0) and after 3 (T 3) and 4.5 mon (T 4.5) along with anthropometric, dietary, and biochemical indices, including plasma lipids, retinol, α- and γ-tocopherols, and FA. Baseline BMI was 32.7±1.97 kg/m2. Five of six patients lost weight; the average weight loss was 3.6±2.4% (P=0.47). There were no significant changes in dietary carotenoid intakes. In contrast, plasma α-and β-carotene concentrations decreased significantly from T 0 to T 4.5 by 45% (P=0.006) and 32% (P=0.013), respectively. Plasma lycopene decreased from T 0 to T 3 but increased again from T 3 to T 4.5, while β-cryptoxanthin and lutein/zeaxanthin concentrations did not change. There were no significant alterations in tocopherol, retinol, and FA concentrations. In conclusion, even though weight loss was not significant, orlistat therapy was associated with significant decreases in plasma concentrations of the highly lipophilic hydrocarbon carotenoids, α- and β-carotene.  相似文献   

7.
The chlorophyll and carotenoid pigment profile of 50 mono-variety virgin olive oils was used to develop an index of authenticity for the product. The presence of carotenoids other than those described, or chlorophyll derivatives at another level of degradation, were found to be determing elements of this index for “virgin” olive oil quality. In addition, the ratio of chlorophyll/carotenoid should be around 1, and the ratio of minor carotenoids/lutein should be about 0.5, with a limited variability. These characteristics may be expected of virgin olive oil in general and are independent of variety. Finally, the percentage of lutein, violaxanthin, and total pigment content may be used to distinguish between mono-variety virgin olive oils.  相似文献   

8.
Eleven carotenoid pigments were found in the bud, leaf, flower petal, seedling and seed of the cotton plant; nine were identified and quantitated. The most abundant carotenoids in the green tissue of the cotton plant were β-carotene and lutein. Carotene hydrocarbons comprised 12% of the total carotenoids in the seed, 15% in the 1-day-old flower petal, 51% in the bud and 57% in green leaves. Only 5,8-epoxy carotenoids were found in the flower petals and only 5,6-epoxides in the other tissue but both were present in the seed. The colorless phytoene precursors to the carotenoids comprised from 20% to 38% of the total carotenoid pigment in the growing tissue of the plant. In cooperation with the Mississippi Agricultural Experiment Station, State College.  相似文献   

9.
The thermal and oxidative degradation of carotenoids was studied in an oil model system to determine their relative stabilities and the major β-carotene isomers formed during the reaction. All-trans β-carotene, 9-cis β-carotene, lycopene, and lutein were heated in safflower seed oil at 75, 85, and 95°C for 24, 12, and 5 h, respectively. The major isomers formed during heating of β-carotene were 13-cis, 9-cis, and an unidentified cis isomer. The degradation kinetics for the carotenoids followed a first-order kinetic model. The rates of degradation were as follows: lycopene>all-trans β-carotene≈9-cis β-carotene>lutein. The values for the thermodynamic parameters indicate that a kinetic compensation effect exists between all of the carotenoids. These data suggest that lycopene was most susceptible to degradation and lutein had the greatest stability in the model system of the carotenoids tested. Furthermore, there was no significant difference in the rates of degradation for 9-cis and all-trans β-carotene under the experimental conditions.  相似文献   

10.
11.
In the screening of DNA polymerase (pol) inhibitor, we isolated lutein, a carotenoid, from the crude (unrefined) pressed oil of canola (low erucic acid rapeseed, Brassica napus L.). Commercially prepared carotenoids such as lutein (1), zeaxanthin (2), β-cryptoxanthin (3), astaxanthin (4), canthaxanthin (5), β-carotene (6), lycopene (7), capsanthin (8), fucoxanthin (9) and fucoxanthinol (10), were investigated for the inhibitory activities of pols. Compounds 1, 2 and 8 exhibited strong inhibition of the activities of mammalian pols β and λ, which are DNA repair- and/or recombination-related pols. On the other hand, all carotenoids tested had no influence on the activity of a mammalian pol α, which is a DNA replicative pol. Lutein (1) was the strongest pol inhibitor of mammalian pols β and λ in the prepared ten carotenoids tested, but did not influence of the activities of mammalian pols α, γ, δ and ε. The tendency for pols β and λ inhibition by these carotenoids showed a positive correlation with the suppression of TPA (12-O-tetradecanoylphorbol-13-acetate)-induced inflammation. These results suggest that cold pressed unrefined canola/rapeseed oil, or other oils with high levels of lutein and other carotenoids, may be useful for their anti-inflammatory properties.  相似文献   

12.
Sea buckthorn berries from Hippophae rhamnoides, H. tibetana, and H. salicifolia were collected from the cold deserts of the Himalayas (Lahaul, Ladakh, and Spiti; India) and characterized in terms of the FA, carotenoid, tocopherol, and tocotrienol composition in their pulp oil. These varied from species to species. Total carotenoids ranged from 692 to 3420 mg/kg in pulp oils of fresh berries, and total tocols, from 666 to 1788 mg/kg. Hippophae salicifolia berries contained substantially lower amounts of pulp oil, with lower levels of carotenoids and tocopherols. There was little difference in the proportion of individual tocols in pulp among the three species. α-Tocopherol alone constituted 40–60% of total pulp tocols in berries. Pulp oils had palmitoleic acid (32–53%) as the most abundant FA followed by palmitic (25–35%), oleic (8–26%), linoleic (5–16%), and linolenic (0.6–2.6%) acids, with the highest deviation observed in the proportion of palmitoleic acid in these berries. Hippophae rhamnoides and H. tibetana contained the highest amount of the lipophilic carotenoids and tocols. Hippophae salicifolia berries had higher amounts of lipophobic constituents such as vitamin C and flavonols.  相似文献   

13.
Seeds from 12 Acacia cyanophylla ecotypes, harvested in Tunisia, were examined for their seed oil contents of carotenoids, tocopherols and phytosterols. The average carotenoid content (lutein and zeaxanthin) was ca. 102 mg kg?1 of total extracted lipids. Lutein (ca. 97 mg kg?1 of total extracted lipids) was usually more abundant than zeaxanthin (ca. 5 mg kg?1 of total extracted lipids). The mean total tocopherol content was ca. 704 mg kg?1 of total extracted lipids. The main isomer was α‐tocopherol, with more than 75 % of total tocopherols (ca. 528 mg kg?1 of total extracted lipids), followed by γ‐tocopherol (ca. 168 mg kg?1 of total extracted lipids) and δ‐tocopherol (ca. 86 mg kg?1 of total lipids). High levels of phytosterols (ca. 7.8 g kg?1 of total extracted lipids) were detected, among which β‐sitosterol was the most abundant (47 %). All these results highlight the richness of carotenoids, tocopherols and sterols in A. cyanophylla seed oil, and imply that this species might constitute a potential resource for the development of functional foods.  相似文献   

14.
Maoka T  Fujiwara Y  Hashimoto K  Akimoto N 《Lipids》2004,39(2):179-183
The characterization and structure of epoxy carotenoids possessing 5,6-epoxy, 5,8-epoxy and 3,6-epoxy end groups conjugated to the polyene chain were investigated using highenergy fast atom bombardment collision-induced dissociation MS/MS methods. In addition to [M-80]+, a characteristic fragment ion of an epoxy carotenoid, product ions resulting from the cleavage of C−C bonds in the polyene chain from the epoxy end group, such as m/z 181 (b ion) and 121 (c ion), were detected. On the other hand, diagnostic ions of m/z 286 (e-H ion) and 312 (f-H ion) were observed, not in the 5,6-epoxy or 5,8-epoxy carotenoid but in the 3,6-epoxy carotenoid. These fragmentation patterns can be used to distinguish 3,6-epoxy carotenoids from 5,6-epoxy or 5,8-epoxy carotenoids. The structure of an epoxy carotenoid, 3,6-epoxy-5,6-dihydro-7′,8′-didehydro-β,β-carotene-5,3′-diol (8), isolated from oyster, was characterized using FAB CID-MS/MS by comparing fragmentation patterns with those of related known compounds.  相似文献   

15.
Hepatic stellate cells (HSC) have an important role in the development of liver fibrosis by producing extracellular matrix proteins when they are activated upon liver injury. We previously demonstrated that astaxanthin (ASTX), a xanthophyll carotenoid, attenuates HSC activation. The objective of this study was to compare the anti-fibrogenic effects of ASTX with those of other common carotenoids. LX-2 cells, a human HSC cell line, were treated with ASTX, lycopene, lutein (LT), zeaxanthin, or canthaxanthin, to measure messenger RNA (mRNA) and protein expression of pro-fibrogenic genes. Pro-fibrogenic gene expressions were also measured in ASTX- or LT-treated primary mouse HSC. To determine the underlying mechanisms of the anti-fibrogenic effect of ASTX and LT, SMA-related and MAD-related protein 3 (SMAD3) pathways and the accumulation of reactive oxygen species (ROS) were measured in LX-2 cells. Among five carotenoids tested, ASTX and LT attenuated HSC activation in LX-2 cells by reducing the mRNA and protein levels of pro-fibrogenic genes, such as smooth muscle α actin and procollagen type I α1 (COL1A1). In addition, both ASTX and LT significantly decreased the expression of pro-fibrogenic genes, including COL1A1, COL3A1, and COL6A1, in activated primary mouse HSC, with ASTX being more potent than LT. The anti-fibrogenic effect of ASTX was mediated by inhibiting the phosphorylation of SMAD3 and cellular ROS accumulation, while LT only prevented the accumulation of ROS in LX-2 cells. In conclusion, ASTX showed the most potent anti-fibrogenic effect among the five carotenoids via inhibition of SMAD3 phosphorylation and cellular ROS accumulation while LT only prevented ROS levels in HSC.  相似文献   

16.
Nutritional and potential disease prevention properties of carotenoids   总被引:3,自引:0,他引:3  
Epidemiological studies have shown that people who consume diets with a high content of vegetables have a reduced risk of degenerative diseases such as specific cancers, cardiovascular disease, age-related macular degenerative disease (AMD), and cataracts. There is no convincing evidence that the protective role of vegetables against cancer and cardiovascular disease is due to carotenoids. However, there is a strong possibility that lutein and zeaxanthin present in food materials may prevent AMD and cataract formation. Increased use of cooked tomato products also has been shown to reduce prostate cancer risk as a result of increased bioavailability of cis-lycopene. One of the most important biochemical mechanisms underlying the cancer-preventive activity of carottenoids is the stimulation of intercellular gap junction communications. β-Carotene, canthaxanthin, and lutein are efficient inducers of intercellular gap junction communication, whereas α-carotene and lycopene are less active.  相似文献   

17.
Both biotic and abiotic selection pressures can contribute to geographic variation in allelochemical production in plants. We examined furanocoumarin production in western North American populations of Heracleum lanatum and Pastinaca sativa that, at different latitudes and altitudes, experience different ultraviolet (UV) light regimes. Total furanocoumarins and linear furanocoumarins of fruits were negatively correlated with UV irradiance, whereas amounts of angular furanocoumarins, which are generally less phototoxic, were not. Another factor potentially influencing furanocoumarin production is the presence of the parsnip webworm Depressaria pastinacella, (Lepidoptera: Oecophoridae), an herbivore that feeds on reproductive structures of both plant species. These insects sequester lutein from their host plants; this carotenoid acts to ameliorate furanocoumarin toxicity. Although the concentration of lutein in fruits did not vary with UV irradiance, lutein sequestration by sixth instars was positively correlated with UV irradiance. Webworm populations are variably infested with the polyembryonic webworm parasitoid Copidosoma sosares Walker (Hymenoptera: Encyrtidae). H. lanatum fruits from populations with webworms parasitized by C. sosares had lower concentrations of furanocoumarins, with the exception of sphondin, than fruits from plants infested with webworms free from parasitism. Lower levels of these furanocoumarins may reduce negative effects on the fitness of this parasitoid. In contrast with the variation in furanocoumarin content, the ability of webworms to metabolize furanocoumarins by cytochrome P450 did not differ significantly among populations from New Mexico to Alberta.  相似文献   

18.
Plant cell cultures as valuable tools for the production of specific metabolites can be greatly improved by the application of elicitors including cyclodextrins (CDs) for enhancing the yields of the desired plant compounds. Here the effects of 2,6-dimethyl-β-cyclodextrins (DIMEB) on the production of carotenoids and quinones from Artemisia annua L. cell suspension cultures were investigated. The addition of 50 mM DIMEB induced an early increase of intracellular carotenoid and quinone contents, which could be observed to a higher extent for lutein (10-fold), Q9 (3-fold) and Q10 (2.5-fold). Real Time PCR analysis revealed that the expression of 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) gene in DIMEB treated cell cultures after three days was 2.5-fold higher than in untreated samples, thus suggesting that the DIMEB induced increase of carotenoids and quinones could be due to the induction of the plastidial isoprenoid biosynthetic route. In addition, the DIMEB treatment induced an enhanced release of carotenoids and quinones into the culture medium of A. annua cell suspension cultures possibly due to the ability of CDs to form inclusion complexes with hydrophobic molecules.  相似文献   

19.
The Japanese quince (Chaenomeles japonica) is a fruit crop that is processed for industry nearly 100% and generates considerable quantities of seeds. The seeds of Japanese quince can be an alternative raw material for the recovery of oil rich in phytosterols, tocopherols, and carotenoids. Despite having been reported for high content of carotenoids, their composition has not been determined yet. Therefore, in the present study, the profiles of carotenoids in the seed oil of 12 genotypes Japanese quince were studied. Overall, seven carotenoids were identified (β-carotene, β-cryptoxanthin, zeaxanthin, lutein, violaxanthin, trans-, and cis-neoxanthin), and one was unidentified. In eight and three of the investigated genotypes of Japanese quince all eight and seven forms of carotenoids, respectively, were found. While in genotype SR-1-1A only three carotenoids were detected. The content of total carotenoids in different seed oils of Japanese quince measured via HPLC was in the range of 2.05–3.81 mg/100 g of oil. The PCA showed that most of the studied samples (83%) were located in one group providing a similar composition and concentration of carotenoids in most genotypes of Japanese quince. A critical finding for industrial/manufacturing processes that require similar and reproducible quality parameters.  相似文献   

20.
Acidulated soybean soapstock increased the vitamin A storage in the livers of young chicks receiving a practical-type diet and improvet the survival of chicks reared on vitamin A-deficient diets. The biological activity was mainly associated with one of the carotenoids present in the acidulated soapstock. This pigment is characterized by its red color on the MgO column, its position below lutein but slightly above cryptoxanthin on the same column, and itssingle absorption max at 460 mμ in the visible region. Evidence is presented to show that the pigment is an artefact formed from lutein during the acidulation of raw soapstock and that it is identical with 3′-hydroxy-3,4-dehydro-β-carotene, a dehydration product of lutein. The National and University Institute of Agriculture, Rehovot, Israel, 1963 Series, 648-E.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号